OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 584–597

Highly-photostable and mechanically flexible all-organic semiconductor lasers

C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 5, pp. 584-597 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1695 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two formats of all-organic distributed-feedback lasers with improved photostability, respectively called nanocomposite and encapsulated lasers, are reported. These lasers are compatible with mechanically-flexible platforms and were entirely fabricated using soft-lithography and spin-coating techniques. The gain elements in both types of lasers were monodisperse π-conjugated star-shaped macromolecules (oligofluorene truxene, T3). In the nanocomposites lasers, these elements were incorporated into a transparent polyimide matrix, while in the encapsulated devices a neat layer of T3 was overcoated with Poly(vinyl alcohol) (PVA). The T3-nanocomposite devices demonstrated a 1/e degradation energy dosage up to ~27.0 ± 6.5 J/cm2 with a threshold fluence of 115 ± 10 µJ/cm2. This represents a 3-fold improvement in operation lifetime under ambient conditions compared to the equivalent laser made with neat organic films, albeit with a 1.6-time increase in threshold. The PVA-encapsulated lasers showed the best overall performance: a 40-time improvement in the operation lifetime and crucially no-trade-off on the threshold, with respectively a degradation energy dosage of ~280 ± 20 J/cm2 and a threshold fluence of 36 ± 8 µJ/cm2.

© 2013 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(160.4890) Materials : Organic materials

ToC Category:
Laser Materials

Original Manuscript: March 4, 2013
Revised Manuscript: April 2, 2013
Manuscript Accepted: April 2, 2013
Published: April 10, 2013

C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, "Highly-photostable and mechanically flexible all-organic semiconductor lasers," Opt. Mater. Express 3, 584-597 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  2. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater.23(7), 869–872 (2011). [CrossRef] [PubMed]
  3. B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010). [CrossRef]
  4. S. Riechel, U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, and V. Wittwer, “Laser modes in organic solid-state distributed feedback lasers,” Appl. Phys. B71(6), 897–900 (2000). [CrossRef]
  5. K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys.42(Part 2, No. 3A), L249–L251 (2003). [CrossRef]
  6. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater.16(2), 130–133 (2004). [CrossRef]
  7. B. Guilhabert, D. Massoubre, E. Richardson, J. J. D. McKendry, G. Valentine, R. K. Henderson, I. M. Watson, E. Gu, and M. D. Dawson, “Sub-micron lithography using InGaN micro-LEDs: mask-free fabrication of LED arrays,” IEEE Photon. Technol. Lett.24(24), 2221–2224 (2012). [CrossRef]
  8. J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, “Flexible blue-emitting encapsulated organic semiconductor DFB laser,” Opt. Express18(25), 25535–25545 (2010). [CrossRef] [PubMed]
  9. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011). [CrossRef]
  10. A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater.24(35), OP221–OP225 (2012). [CrossRef] [PubMed]
  11. M. H. Song, B. Wenger, and R. H. Friend, “Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer,” Appl. Phys. Lett.104(3), 033107 (2008).
  12. S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int.61(3), 390–406 (2012). [CrossRef]
  13. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett.92(16), 163306 (2008). [CrossRef]
  14. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett.88(24), 241116 (2006). [CrossRef]
  15. A. E. Vasdekis, G. Tsiminis, J. C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express14(20), 9211–9216 (2006). [CrossRef] [PubMed]
  16. N. Grassie, and G. Scott, Polymer Degradation and Stabilisation (Cambridge University Press, 1985).
  17. W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004). [CrossRef]
  18. L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem.22(18), 8938–8947 (2012). [CrossRef]
  19. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett.91(26), 261104 (2007). [CrossRef]
  20. J. Buseman-Williams, K. D. Frischknecht, M. D. Hubert, A. K. Saafir, and J. D. Tremel, “Flat-plate encapsulation solution for OLED displays using a printed getter,” J. Soc. Inf. Disp.15(2), 103–112 (2007). [CrossRef]
  21. A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. Bradley, and M. Koeberg, “Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures,” J. Am. Chem. Soc.126(42), 13695–13702 (2004). [CrossRef] [PubMed]
  22. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett.94(24), 243304 (2009). [CrossRef]
  23. http://www.mantechmaterials.com/products.asp .
  24. L. Cerdán, A. Costela, I. García-Moreno, O. García, R. Sastre, M. Calle, D. Muñoz, and J. de Abajo, “High-gain long-lived amplified spontaneous emission from dye-doped fluorinated polyimide planar waveguides,” Macromol. Chem. Phys.210(19), 1624–1631 (2009). [CrossRef]
  25. J. G. Pritchard, Poly (vinyl alcohol): Basic Properties and Uses (Gordon and Breach, 1970).
  26. P. V. Adhyapak, N. Singh, A. Vijayan, R. C. Aiyer, and P. K. Khanna, “Single mode waveguide properties of m-NA doped Au/PVA nano-composites: synthesis, characterization and studies,” Mater. Lett.61(16), 3456–3461 (2007). [CrossRef]
  27. M. M. W. Muscatello and S. A. Asher, “Poly (vinyl alcohol) rehydratable photonic crystal sensor materials,” Adv. Funct. Mater.18(8), 1186–1193 (2008). [CrossRef] [PubMed]
  28. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012). [CrossRef] [PubMed]
  29. O. G. Abdullah and D. R. Saber, “Optical absorption of polyvinyl alcohol films doped with nickel chloride,” Appl. Mech. Mater.110-116, 177–182 (2011). [CrossRef]
  30. J. Gaume, P. Wong-Wah-Chung, A. Rivaton, S. Thérias, and J.-L. Gardette, “Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation,” RSC Adv.1(8), 1471–1481 (2011). [CrossRef]
  31. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley, 1999).
  32. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am.1(7), 742–753 (1984). [CrossRef]
  33. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett.26(9), 593–595 (2001). [CrossRef] [PubMed]
  34. M. Lu, B. T. Cunningham, S.-J. Park, and J. G. Eden, “Vertically emitting, dye-doped polymer laser in the green (λ ~536 nm) with a second order distributed feedback grating fabricated by replica molding,” Opt. Commun.281(11), 3159–3162 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited