OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 598–611

Femtosecond laser-induced refractive index modifications in fluoride glass

Jean-Philippe Bérubé, Martin Bernier, and Réal Vallée  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 5, pp. 598-611 (2013)
http://dx.doi.org/10.1364/OME.3.000598


View Full Text Article

Enhanced HTML    Acrobat PDF (1471 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interaction of focused 800 nm femtosecond (fs) laser pulses at low (1–45 kHz) and moderate (50–250 kHz) repetition rates with fluoride (ZBLAN-type) bulk glass is investigated in detail. It is shown that at repetition rates lower than ~50 kHz and low pulse energies, the refractive index change induced by pulse filamentation is mainly negative at the irradiated zone. At repetition rates above 50 kHz, structures are formed as a result of the fs laser pulse induced heat accumulation and subsequent melting of the glass. The refractive index profile of the structures produced in this regime is influenced by the laser writing conditions (repetition rate, pulse energy and translation speed). It is shown that waveguides with large circular cross sections and smooth positive index changes can be formed through a precise control of glass exposure. Those waveguides can exhibit low propagation losses (~0.4–2 dB/cm) and are thus good candidates for the development of mid-IR integrated photonic devices. Both absorbed energy and repetition rate thresholds for heat accumulation are determined experimentally.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.2250) Ultrafast optics : Femtosecond phenomena
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Laser Materials Processing

History
Original Manuscript: February 21, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 9, 2013
Published: April 12, 2013

Citation
Jean-Philippe Bérubé, Martin Bernier, and Réal Vallée, "Femtosecond laser-induced refractive index modifications in fluoride glass," Opt. Mater. Express 3, 598-611 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-5-598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001). [CrossRef] [PubMed]
  3. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett.34(3), 247–249 (2009). [CrossRef] [PubMed]
  4. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26(1), 42–43 (2001). [CrossRef] [PubMed]
  5. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20(7), 1559–1567 (2003). [CrossRef]
  6. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett.31(23), 3495–3497 (2006). [CrossRef] [PubMed]
  7. J. Chan, T. Huser, S. Risbud, J. Hayden, and D. Krol, “Waveguide formation in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett.82(15), 2371–2373 (2003). [CrossRef]
  8. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Preparation and optical properties of fluoride glass waveguides induced by laser pulses,” J. Non-Cryst. Solids256-257, 212–219 (1999). [CrossRef]
  9. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett.29(7), 748–750 (2004). [CrossRef] [PubMed]
  10. V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys.97(8), 083102 (2005). [CrossRef]
  11. R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” IEEE J. Sel. Top. Quantum Electron.12(2), 277–285 (2006). [CrossRef]
  12. A. Mermillod-Blondin, I. M. Burakov, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B77(10), 104205 (2008). [CrossRef]
  13. B. Bendow, I. D. Aggarwal, and G. Lu, Fluoride Glass Fiber Optics (Academic Press, 1991), p. 85.
  14. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  15. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett.32(5), 454–456 (2007). [CrossRef] [PubMed]
  16. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27(23), 2061–2063 (2002). [CrossRef] [PubMed]
  17. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt.27(10), 1956–1959 (1988). [CrossRef] [PubMed]
  18. J.-P. Bérubé, R. Vallée, M. Bernier, O. Kosareva, N. Panov, V. Kandidov, and S. L. Chin, “Self and forced periodic arrangement of multiple filaments in glass,” Opt. Express18(3), 1801–1819 (2010). [CrossRef] [PubMed]
  19. J. S. Sanghera and I. D. Aggarwal, Infrared Fiber Optics (CRC Press, 1998).
  20. S. H. Messaddeq, J. P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensibility of GeS binary glasses to 800nm femtosecond pulses,” Opt. Express20(3), 2824–2831 (2012). [CrossRef]
  21. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  22. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003). [CrossRef]
  23. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express13(6), 1999–2006 (2005). [CrossRef] [PubMed]
  24. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.31(17), 2553–2555 (2006). [CrossRef] [PubMed]
  25. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express14(11), 4826–4834 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited