OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 612–623

Scaling of black silicon processing time by high repetition rate femtosecond lasers

Giorgio Nava, Roberto Osellame, Roberta Ramponi, and Krishna Chaitanya Vishnubhatla  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 5, pp. 612-623 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface texturing of silicon substrates is performed by femtosecond laser irradiation at high repetition rates. Various fabrication parameters are optimized, in order to achieve very high absorptance in the visible region from the micro-structured silicon wafers as compared to the unstructured ones. A 35-fold reduction of the processing time is demonstrated by increasing the laser repetition rate from 1 kHz to 200 kHz. Further scaling up to 1 MHz is proved with potential reduction of the processing time by a factor of 65. A figure of merit ξ is introduced for a quantitative guidance in the choice of fabrication parameters.

© 2013 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Materials Processing

Original Manuscript: February 22, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 8, 2013
Published: April 15, 2013

Giorgio Nava, Roberto Osellame, Roberta Ramponi, and Krishna Chaitanya Vishnubhatla, "Scaling of black silicon processing time by high repetition rate femtosecond lasers," Opt. Mater. Express 3, 612-623 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process.79(7), 1635–1641 (2004). [CrossRef]
  2. M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011). [CrossRef] [PubMed]
  3. J. Oh, H. C. Yuan, and H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures,” Nat. Nanotechnol.7(11), 743–748 (2012). [CrossRef] [PubMed]
  4. Z. Li, B. K. Nayak, V. V. Iyengar, D. McIntosh, Q. Zhou, M. C. Gupta, and J. C. Campbell, “Laser-textured silicon photodiode with broadband spectral response,” Appl. Opt.50(17), 2508–2511 (2011). [CrossRef] [PubMed]
  5. http://sionyx.com/2011/10/sionyx-solar-achieves-record-results-for-black-silicon-solar-cells-2/
  6. H. Hauser, B. Michl, V. Kübler, S. Schwarzkopf, C. Müller, M. Hermle, and B. Bläsi, “Nanoimprint lithography for honeycomb texturing of multicrystalline silicon,” Energy Procedia8, 648–653 (2011). [CrossRef]
  7. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells90(15), 2319–2328 (2006). [CrossRef]
  8. K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Sol. Energy Mater. Sol. Cells92(8), 960–968 (2008). [CrossRef]
  9. D. S. Ruby, S. H. Zaidi, S. Narayanan, B. M. Damiani, and A. Rohatgi, “Rie-texturing of multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 133–137 (2002). [CrossRef]
  10. C. Zechner, G. Hahn, W. Jooss, M. Wibral, B. Bitnar, S. Keller, M. Spiegel, P. Fath, G. Willeke, and E. Bucher, “Systematic study towards high efficiency multicrystalline silicon solar cells with mechanical surface texturization,” Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference (1997), pp. 243–246. [CrossRef]
  11. E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, and V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells87(1-4), 423–431 (2005). [CrossRef]
  12. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl.19(6), 631–639 (2011). [CrossRef]
  13. L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achiev. Mater. Manuf. Eng.31, 77–82 (2008).
  14. J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells95(1), 2–6 (2011). [CrossRef]
  15. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3085–3093 (2006). [CrossRef]
  16. J. Yoo, G. Yu, and J. Yi, “Black surface structures for crystalline silicon solar cells,” Mater. Sci. Eng. B159–160, 333–337 (2009). [CrossRef]
  17. J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, “Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations,” Appl. Surf. Sci.245(1-4), 102–108 (2005). [CrossRef]
  18. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater.17(14), 3582–3586 (2005). [CrossRef]
  19. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys.110(7), 073106 (2011). [CrossRef]
  20. V. Schütz, A. Horn, and U. Stute, “High-throughput process parallelization for laser surface modification on Si-Solar cells: determination of the process window,” Proc. SPIE8244, 82440X, 82440X-7 (2012). [CrossRef]
  21. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, “Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses,” J. Appl. Phys.93(5), 2626–2629 (2003). [CrossRef]
  22. M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films516(20), 6791–6795 (2008). [CrossRef]
  23. B. K. Nayak and M. C. Gupta, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng.48(10), 966–973 (2010). [CrossRef]
  24. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  25. J. Schille, R. Ebert, U. Loeschner, P. Regenfuss, T. Suess, and H. Exner, “Micro structuring with highly repetitive ultra short laser pulses,” in Proceedings of LPM, The 9th International Symposium on Laser Precision Microfabrication (2008).
  26. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process.70(4), 383–385 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited