OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 633–644

Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics

Guojun Gao and Lothar Wondraczek  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 5, pp. 633-644 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (8431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on downconversion of one blue photon to two near-infrared (NIR) photons (~10000 cm−1) in Pr3+/Yb3+ co-doped SrO-La2O3-Al2O3-B2O3-SiO2 glasses and LaBO3 glass ceramics. The Pr3+ ions act as broadband spectral sensitizer in the spectral range of 415-505 nm. Energy transfer occurs subsequently from Pr3+ to Yb3+, followed by re-emission in the NIR spectral range. The transfer efficiency is indicated by the degree of decrease of Pr3+-related photoluminescence (PL) and PL lifetime of the 3P0 and 1D2 levels with increasing Yb3+ concentration. For the present case, we find an optimum dopant concentration of Yb2O3 of ~0.5 mol % for a Pr2O3 concentration of 1.0 mol %. A theoretical maximum of quantum efficiency of 183% is reached for 5 mol % of Yb2O3. PL characteristics (absorption cross section and emission lifetime) are further improved upon precipitation of crystalline LaBO3, where both Pr3+ and Yb3+ ions occupy La3+ sites with an assumedly statistical distribution and a high degree of partitioning.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: March 25, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 11, 2013
Published: April 18, 2013

Guojun Gao and Lothar Wondraczek, "Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics," Opt. Mater. Express 3, 633-644 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012). [CrossRef]
  2. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96, 151106 (2010). [CrossRef]
  3. G. Gao and L. Wondraczek, “Near-infrared downconversion in Mn2+–Yb3+ co-doped Zn2GeO4,” J. Mater. Chem.1(10), 1952–1958 (2013). [CrossRef]
  4. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009). [CrossRef]
  5. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009). [CrossRef] [PubMed]
  6. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008). [CrossRef] [PubMed]
  7. D. Yu, S. Ye, M. Peng, Q. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012). [CrossRef]
  8. D. Yu, X. Huang, S. Ye, M. Peng, Q. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4:Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011). [CrossRef]
  9. D. Yu, S. Ye, M. Peng, Q. Zhang, J. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011). [CrossRef]
  10. S. Ye, J. Zhou, S. Wang, R. Hu, D. Wang, and J. Qiu, “Broadband downshifting luminescence in Cr3+-Yb3+ co-doped garnet for efficient photovoltaic generation,” Opt. Express21(4), 4167–4173 (2013). [CrossRef] [PubMed]
  11. J. Zhou, Y. Teng, S. Ye, Y. Zhuang, and J. Qiu, “Enhanced downconversion luminescence by co-doping Ce3+ in Tb3+–Yb3+ doped borate glasses,” Chem. Phys. Lett.486(4-6), 116–118 (2010). [CrossRef]
  12. S. Ye, N. Jiang, J. Zhou, D. Wang, and J. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012). [CrossRef]
  13. J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma, and J. Qiu, “Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ co-doped yttrium aluminum garnet,” Phys. Chem. Chem. Phys.12(41), 13759–13762 (2010). [CrossRef] [PubMed]
  14. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Upconverter solar cells: materials and applications,” Energy Environ. Sci.4(12), 4835–4848 (2011). [CrossRef]
  15. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, “Rare-earth ion-doped up conversion materials for photovoltaic applications,” Adv. Mater.23(22-23), 2675–2680 (2011). [CrossRef] [PubMed]
  16. Z. Xia, Y. Luo, M. Guan, and L. Liao, “Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+.,” Opt. Express20(Suppl 5), A722–A728 (2012). [CrossRef] [PubMed]
  17. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009). [CrossRef]
  18. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006). [CrossRef]
  19. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient downconversion of solar spectrum by Er3+-Yb3+ co-doped nanostructured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010). [CrossRef]
  20. S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ co-doped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008). [CrossRef]
  21. A. Guille, A. Pereira, C. Martinet, and B. Moine, “Quantum cutting in CaYAlO4: Pr3+, Yb3+,” Opt. Lett.37(12), 2280–2282 (2012). [CrossRef] [PubMed]
  22. Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J.-I. Adam, J. Ren, and G. Chen, “Efficient near-infrared downconversion in Pr3+-Yb3+ co-doped glasses and glass ceramics containing LaF3 nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011). [CrossRef]
  23. W. Höland and G. H. Beall, Glass Ceramic Technology (Am. Ceram. Soc., 2002).
  24. W. Zhang, Q. Chen, J. Zhang, Q. Qian, Q. Zhang, and L. Wondraczek, “Enhanced NIR emission from nanocrystalline LaF3:Ho3+ germanate glass ceramics for E-band optical amplification,” J. Alloy. Comp.541, 323–327 (2012). [CrossRef]
  25. G. Gao, R. Meszaros, M. Peng, and L. Wondraczek, “Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics,” Opt. Express19(Suppl 3), A312–A318 (2011). [CrossRef] [PubMed]
  26. G. Lakshminarayana and L. Wondraczek, “Photoluminescence and energy transfer in Tb3+/Mn2+ co-doped ZnAl2O4 glass ceramics,” J. Solid State Chem.184(8), 1931–1938 (2011). [CrossRef]
  27. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011). [CrossRef]
  28. G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express18(Suppl 4), A575–A583 (2010). [CrossRef] [PubMed]
  29. K. L. Ley, M. Krumpelt, R. Kumar, J. H. Meiser, and I. Bloom, “Glass-ceramic sealants for solid oxide fuel cells: Par I. Physical properties,” J. Mater. Res.11(06), 1489–1493 (1996). [CrossRef]
  30. R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]
  31. Q. Chen, W. Zhang, X. Huang, G. Dong, M. Peng, and Q. Zhang, “Efficient down- and up-conversion of Pr3+-Yb3+ co-doped transparent oxyfluoride glass ceramics,” J. Alloy. Comp.513, 139–144 (2012). [CrossRef]
  32. D. K. Sardar and C. C. Russel, “Optical transitions, absorption intensities, and inter-manifold emission cross section of Pr3+ (4f2) in Ca5(PO4)3F crystal host,” J. Appl. Phys.95(10), 5334–5339 (2004). [CrossRef]
  33. G. Gao, G. Wang, C. Yu, J. Zhang, and L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009). [CrossRef]
  34. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010). [CrossRef]
  35. X. Chen, X. Huang, and Q. Zhang, “Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+, Yb3+ phosphor,” J. Appl. Phys.106(6), 063518 (2009). [CrossRef]
  36. E. van der Kolk, O. M. Ten Kate, J. W. Wiegman, D. Biner, and K. W. Krämer, “Enhanced 1G4 emission in NaLaF4: Pr3+, Yb3+ and charge transfer in NaLaF4: Ce3+, Yb3+ studied by Fourier transform luminescence spectroscopy,” Opt. Mater.33(7), 1024–1027 (2011). [CrossRef]
  37. G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem.22(6), 2582–2588 (2012). [CrossRef]
  38. G. Gao, M. Peng, and L. Wondraczek, “Temperature dependence and quantum efficiency of ultra-broad NIR photoluminescence from Ni2+ centers in nanocrystalline Ba-Al titanate glass ceramics,” Opt. Lett.37(7), 1166–1168 (2012). [CrossRef] [PubMed]
  39. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from nanocrystalline Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses52, 59–63 (2011).
  40. Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007). [CrossRef]
  41. A. Nakatsuka, O. Ohtaka, H. Arima, N. Nakayama, and T. Mizota, “Aragonite-type lanthanum orthoborate, LaBO3,” Acta Crystallogr. Sect. E Struct. Rep. Online62(4), i103–i105 (2006). [CrossRef]
  42. Y. Katayama and S. Tanabe, “Mechanism of quantum cutting in Pr3+-Yb3+ co-doped oxyfluoride glass ceramics,” J. Lumin.134, 825–829 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited