OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 664–670

Tunable red light emission from a-Si:H/a-SiNx multilayers

Chao Song, Rui Huang, Xiang Wang, Yanqing Guo, and Jie Song  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 5, pp. 664-670 (2013)
http://dx.doi.org/10.1364/OME.3.000664


View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable red photoluminescence from a-Si:H/a-SiNx multilayers was modulated in the wavelength range of 800–640 nm by controlling the thickness of the a-Si:H sublayer from 4 to 1.5 nm. Subsequent annealing was used to improve red photoluminescence without recrystallization of the amorphous silicon sublayers. The significant enhancement of red emission was found to depend on the decomposition of the Si–H bond in a-Si:H sublayers. Based on the absorption measurement, Raman, and FTIR spectra, the origin of light emission is ascribed to the silicon dangling bonds associated with hydrogen in a-Si:H sublayers, and the mechanism of light emission is suggested from the radiative recombination between the electrons existing at the negatively charged levels of silicon dangling bond and holes at the valence band.

© 2013 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: March 28, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: April 18, 2013
Published: April 29, 2013

Citation
Chao Song, Rui Huang, Xiang Wang, Yanqing Guo, and Jie Song, "Tunable red light emission from a-Si:H/a-SiNx multilayers," Opt. Mater. Express 3, 664-670 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-5-664


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  2. C. Tan, J. Zhang, X. Li, G. Liu, B. Tayo, and N. Tansu, “First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters,” J. Disp. Technol.9(4), 272–279 (2013). [CrossRef]
  3. P. Zhu, G. Liu, J. Zhang, and N. Tansu, “FDTD analysis on extraction efficiency of GaN light-emitting diodes with microsphere arrays,” J. Disp. Technol.9(5), 317–323 (2013). [CrossRef]
  4. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett.75(16), 2365–2367 (1999). [CrossRef]
  5. N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J. W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4× efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett.74(15), 2230–2232 (1999). [CrossRef]
  6. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20−2−1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol.9(4), 190–198 (2013). [CrossRef]
  7. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000). [CrossRef] [PubMed]
  8. N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001). [CrossRef] [PubMed]
  9. G. Lin, C. Lin, and H. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal-based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett.91(9), 093122 (2007). [CrossRef]
  10. K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett.86(7), 071909 (2005). [CrossRef]
  11. M. Molinari, H. Rinnert, and M. Vergnat, “Evolution with the annealing treatments of the photoluminescence mechanisms in a-SiNx:H alloys prepared by reactive evaporation,” J. Appl. Phys.101(12), 123532 (2007). [CrossRef]
  12. X. Wang, R. Huang, C. Song, Y. Guo, and J. Song, “Effect of barrier layers on electroluminescence from Si/SiOxNy multilayer structures,” Appl. Phys. Lett.102(8), 081114 (2013). [CrossRef]
  13. G. Lin, Y. Pai, and C. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nanopillar array,” J. Lightwave Technol.26(11), 1486–1491 (2008). [CrossRef]
  14. L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T. W. F. Chang, V. Sukhovatkin, and E. H. Sargent, “Light emission efficiency and dynamics in silicon-rich silicon nitride films,” Appl. Phys. Lett.88(23), 233109 (2006). [CrossRef]
  15. K. Chen, X. Huang, J. Xu, and D. Feng, “Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures,” Appl. Phys. Lett.61(17), 2069–2071 (1992). [CrossRef]
  16. G. G. Qin, G. Z. Ran, K. Sun, and H. J. Xu, “Light emission from nanoscale Si/Si oxide materials,” J. Nanosci. Nanotechnol.10(3), 1584–1595 (2010). [CrossRef] [PubMed]
  17. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002). [CrossRef]
  18. W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Red light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett.90(22), 221103 (2007). [CrossRef]
  19. Y. H. Lin, C. L. Wu, Y. H. Pai, and G. R. Lin, “A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector,” Opt. Express19(7), 6563–6570 (2011). [CrossRef] [PubMed]
  20. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett.93(15), 151116 (2008). [CrossRef]
  21. V. A. Volodin, K. O. Bugaev, A. K. Gutakovsky, L. I. Fedina, M. A. Neklyudova, A. V. Latyshev, and A. Misiuk, “Evolution of silicon nanoclusters and hydrogen in SiNx:H films: influence of high hydrostatic pressure under annealing,” Thin Solid Films520(19), 6207–6214 (2012). [CrossRef]
  22. R. Huang, J. Song, X. Wang, Y. Q. Guo, C. Song, Z. H. Zheng, X. L. Wu, and P. K. Chu, “Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride,” Opt. Lett.37(4), 692–694 (2012). [CrossRef] [PubMed]
  23. G. Scardera, T. Puzzer, I. Perez-Wurfl, and G. Conibeer, “The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures,” J. Cryst. Growth310(15), 3680–3684 (2008). [CrossRef]
  24. M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, “Photoluminescence of Si-rich silicon nitride: defect-related states and silicon nanoclusters,” Appl. Phys. Lett.90(13), 131903 (2007). [CrossRef]
  25. G. Lin, Y. Pai, C. Lin, and C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010). [CrossRef]
  26. A. Nakajima, Y. Sugita, K. Kawamura, H. Tomita, and N. Yokoyama, “Microstructure and optical absorption properties of Si nanocrystals fabricated with low-pressure chemical-vapor deposition,” J. Appl. Phys.80(7), 4006–4011 (1996). [CrossRef]
  27. J. Singh, “Effective mass of charge carriers in amorphous semiconductors and its applications,” J. Non-Cryst. Solids299–302(1), 444–448 (2002). [CrossRef]
  28. C. Song, G. R. Chen, J. Xu, T. Wang, H. C. Sun, Y. Liu, W. Li, Z. Y. Ma, L. Xu, X. F. Huang, and K. J. Chen, “Evaluation of microstructures and carrier transport behaviors during the transition process from amorphous to nanocrystalline silicon thin films,” J. Appl. Phys.105(5), 054901 (2009). [CrossRef]
  29. Z. Ma, K. Chen, X. Huang, J. Xu, W. Li, D. Zhu, J. Mei, F. Qiao, and D. Feng, “Strong blue photoluminescence from as-fabricated amorphous-Si:H/SiO2 multilayers,” Appl. Phys. Lett.85(4), 516–518 (2004). [CrossRef]
  30. H. L. Hao, L. K. Wu, W. Z. Shen, and H. F. W. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride,” Appl. Phys. Lett.91(20), 201922 (2007). [CrossRef]
  31. W. S. Wei, G. Y. Xu, J. L. Wang, and T. M. Wang, “Raman spectra of intrinsic and doped hydrogenated nanocrystalline silicon films,” Vacuum81(5), 656–662 (2007). [CrossRef]
  32. R. L. C. Vink, G. T. Barkema, and W. F. van der Weg, “Raman spectra and structure of amorphous Si,” Phys. Rev. B63(11), 115210 (2001). [CrossRef]
  33. S. Hasegawa, L. He, Y. Amano, and T. Inokuma, “Analysis of SiH and SiN vibrational absorption in amorphous SiNx:H films in terms of a charge-transfer model,” Phys. Rev. B Condens. Matter48(8), 5315–5325 (1993). [CrossRef] [PubMed]
  34. F. Vaillant and D. Jousse, “Recombination at dangling bonds and steady-state photoconductivity in a-Si:H,” Phys. Rev. B Condens. Matter34(6), 4088–4098 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited