OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 684–690

Nanoindentation studies on waveguides inscribed in chalcogenide glasses using ultrafast laser

Tamilarasan Sabapathy, M. S. R. N. Kiran, Arunbabu Ayiriveetil, Ajoy K. Kar, U. Ramamurty, and Sundarrajan Asokan  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 684-690 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical straight waveguides are inscribed in GeGaS and GeGaSSb glasses using a high repetition-rate sub-picosecond laser. The mechanical properties of the glasses in the inscribed regions, which have undergone photo induced changes, have been evaluated by using the nano-indentation technique. Results show that the hardness and elastic modulus of the photo-modified glasses are significantly lower as compared to the other locations in the waveguide, which tend to be similar to those of the unexposed areas. The observed mechanical effects are found to correlate well with the optical properties of the waveguides. Further, based on the results, the minimum threshold values of hardness and elastic modulus for the particular propagation mode of the waveguide (single or multi), has been established.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(230.3120) Optical devices : Integrated optics devices
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Laser Materials Processing

Original Manuscript: March 5, 2013
Revised Manuscript: April 2, 2013
Manuscript Accepted: April 5, 2013
Published: May 1, 2013

Tamilarasan Sabapathy, M. S. R. N. Kiran, Arunbabu Ayiriveetil, Ajoy K. Kar, U. Ramamurty, and Sundarrajan Asokan, "Nanoindentation studies on waveguides inscribed in chalcogenide glasses using ultrafast laser," Opt. Mater. Express 3, 684-690 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003). [CrossRef]
  2. B. J. Eggleton, B. L. Davis, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  3. D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater.6, 133–137 (2004).
  4. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995). [CrossRef]
  5. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256-257, 6–16 (1999). [CrossRef]
  6. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express14(5), 1797–1803 (2006). [CrossRef]
  7. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97(11), 111114 (2010). [CrossRef]
  8. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett.21(20), 1450–1453 (1968). [CrossRef]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef]
  10. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. K. Kar, and R. R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett.37(3), 392–394 (2012). [CrossRef]
  11. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited],” Opt. Mater. Express1(5), 845–855 (2011). [CrossRef]
  12. T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express2(11), 1556–1561 (2012). [CrossRef]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  14. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef]
  15. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108(7), 073533 (2010). [CrossRef]
  16. O. Caulier, D. Le Coq, L. Calvez, E. Bychkov, and P. Masselin, “Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation,” Opt. Express19(21), 20088–20096 (2011). [CrossRef]
  17. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001). [CrossRef]
  18. A. Saliminia, T. V. Galstian, and A. Villeneuve, “Optical field-induced mass transport in As2S3 chalcogenide glasses,” Phys. Rev. Lett.85(19), 4112–4115 (2000). [CrossRef]
  19. H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science270(5238), 974–975 (1995). [CrossRef]
  20. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express15(24), 15776–15781 (2007). [CrossRef]
  21. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express20(2), 1545–1551 (2012). [CrossRef]
  22. A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett.36(17), 3395–3397 (2011). [CrossRef]
  23. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res.7(06), 1564–1583 (1992). [CrossRef]
  24. M. S. R. N. Kiran, S. Varughese, U. Ramamurty, and G. R. Desiraju, “Effect of dehydration on the mechanical properties of sodium saccharin dihydrate probed with nanoindentation,” CrystEngComm14(7), 2489–2493 (2012). [CrossRef]
  25. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20(7), 1559–1567 (2003). [CrossRef]
  26. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13(15), 5676–5681 (2005). [CrossRef]
  27. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28(1), 55–57 (2003). [CrossRef]
  28. M. L. Trunov, S. N. Dub, and R. S. Shmegera, “Photo-induced transition from elastic to plastic behaviour in amorphous As-Se films studied by nanoindentation,” J. Optoelectron. Adv. Mater.7, 619–624 (2005).
  29. I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids90(1-3), 505–508 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited