OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 711–722

Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymers

Jaana Vapaavuori, Arri Priimagi, Antti J. Soininen, Nadia Canilho, Edis Kasëmi, Janne Ruokolainen, Matti Kaivola, and Olli Ikkala  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 711-722 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ionic complexes of azobenzenes and dendritic structures are shown to exhibit efficient light-induced mass transport upon irradiation with a light interference pattern. Surface-relief gratings (SRGs) with modulation depths of up to 550 nm were successfully inscribed. We compare the SRG formation in three generations of supramolecular dendrons, dendrimers, and dendronized polymers and demonstrate that the grating formation process is destructed by the existence of self-assembled structures as well as by overly large size of the dendronic complexes.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.5335) Materials : Photosensitive materials

ToC Category:
Organics and Polymers

Original Manuscript: March 15, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 25, 2013
Published: May 3, 2013

Jaana Vapaavuori, Arri Priimagi, Antti J. Soininen, Nadia Canilho, Edis Kasëmi, Janne Ruokolainen, Matti Kaivola, and Olli Ikkala, "Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymers," Opt. Mater. Express 3, 711-722 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. M. Rosen, C. J. Wilson, D. A. Wilson, M Peterca, M. R. Imam, and V. Percec, “Dendron-mediated self-assembly, disassembly, and self-organization of complex systems,” Chem. Rev.109,6275–6540 (2009). [CrossRef] [PubMed]
  2. D. Astruc, E. Boisselier, and C. Ornelas, “Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine,” Chem. Rev.110,1857–1959 (2010). [CrossRef] [PubMed]
  3. P. Ceroni, G. Bergamini, F. Marchioni, and V. Balzani, “Luminescence as a tool to investigate dendrimer properties,” Prog. Polym. Sci.30,453–473 (2005). [CrossRef]
  4. H. Ma and A. K. Y. Jen, “Functional dendrimers for nonlinear optics,” Adv. Mater.13,1201–1205 (2001). [CrossRef]
  5. M. J. Cho, D. H. Choi, P. A. Sullivan, A. J. Akelaitis, and L. R. Dalton, “Recent progress in second-order nonlinear optical polymers and dendrimers,” Prog. Polym. Sci.33,1013–1058 (2008). [CrossRef]
  6. R. Deloncle and A.-M. Caminade, “Stimuli-responsive dendritic structures: the case of light-driven azobenzene-containing dendrimers and dendrons,” J. Photochem. Photobiol. C11,25–45 (2010). [CrossRef]
  7. D. L. Jiang and T. Aida, “Photoisomerization in dendrimers by harvesting of low-energy photons,” Nature388,5–7 (1997).
  8. F. Puntoriero, P. Ceroni, V. Balzani, G. Bergamini, and F. Vögtle, “Photoswitchable dendritic hosts: a dendrimer with peripheral azobenzene groups,” J. Am. Chem. Soc.129,10714–10719 (2007). [CrossRef] [PubMed]
  9. M. Marcos, R. Alcalá, J. Barberá, P. Romero, C. Sánchez, and J. L. Serrano, “Photosensitive ionic nematic liquid crystalline complexes based on dendrimers and hyperbranched polymers and a cyanoazobenzene carboxylic acid,” Chem. Mater.20,5209–5217 (2008). [CrossRef]
  10. S. Hernández-Ainsa, R. Alcalá, J. Barberá, M. Marcos, C. Sánchez, and J. L. Serrano, “Ionic photoresponsive azo-codendrimer with room temperature mesomorphism and high photoinduced optical anisotropy,” Macromolecules43,2660–2663 (2010). [CrossRef]
  11. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, “Surface relief structures on azo polymer films,” J. Mater. Chem.9,1941–1955 (1999). [CrossRef]
  12. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102,4139–4176 (2002). [CrossRef] [PubMed]
  13. L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express2,11–19 (2012). [CrossRef]
  14. S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater.24,2069–2103 (2012). [CrossRef] [PubMed]
  15. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater.23,4174–4177 (2011). [CrossRef] [PubMed]
  16. C. J. Barrett, P. L. Rochon, and A. L. Natansohn, “Model of laser-driven mass transport in thin films of dye-functionalized polymers,” J. Chem. Phys.109,1505–1516 (1998). [CrossRef]
  17. T. Pedersen, P. M. Johansen, N. C. Holme, P. S. Ramanujam, and S. Hvilsted, “Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers,” Phys. Rev. Lett.80,89–92 (1998). [CrossRef]
  18. J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. K. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett.72,2096–2098 (1998). [CrossRef]
  19. P. Lefin, C. Fiorini, and J.-M. Nunzi, “Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices,” Pure Appl. Opt.7,71–82 (1998). [CrossRef]
  20. M. Saphiannikova and D. Neher, “Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films,” J. Phys. Chem. B109,19428–19436 (2005). [CrossRef]
  21. M. L. Juan, J. Plain, R. Bachelot, P. Royer, S. K. Gray, and G. P. Wiederrecht, “Multiscale model for photoinduced molecular motion in azo polymers,” ACS Nano3,1573–1579 (2009). [CrossRef] [PubMed]
  22. A. Ambrosio, L. Marrucci, F. Brbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun.3,989 (2012). [CrossRef] [PubMed]
  23. J. Gao, Y. He, F. Liu, X. Zhang, Z. Wang, and X. Wang, “Azobenzene-containing supramolecular side-chain polymer films for laser-induced surface relief gratings,” Chem. Mater.19,3877–3881 (2007). [CrossRef]
  24. N. Zettsu, T. Ogasawara, N. Mizoshita, S. Nagano, and T. Seki, “Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene unit,” Adv. Mater.20,516–521 (2008). [CrossRef]
  25. J. Vapaavuori, A. Priimagi, and M. Kaivola, “Photoinduced surface-relief gratings in films of supramolecular polymer–bisazobenzene complexes,” J. Mater. Chem.20,5260–5264 (2010). [CrossRef]
  26. O. Kulikovska, L. M. Goldenberg, and J. Stumpe, “Supramolecular azobenzene-based materials for optical generation of microstructures,” Chem. Mater.19,3343–3348 (2007). [CrossRef]
  27. Q. Zhang, X. Wang, C. J. Barrett, and C. G. Bazuin, “Spacer-free ionic dyepolyelectrolyte complexes: influence of molecular structure on liquid crystal order and photoinduced motion,” Chem. Mater.21,3216–3227 (2009). [CrossRef]
  28. A. Priimagi, G. Cavallo, A. Forni, M. Gorynsztejn–Leben, M. Kaivola, P. Metrangolo, R. Milani, A. Shishido, T. Pilati, G. Resnati, and G. Terraneo, “Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers,” Adv. Funct. Mater.22,2572–2579 (2012). [CrossRef]
  29. A. Priimagi, J Vapaavuori, F. J. Rodriguez, C. F. J. Faul, M. T. Heino, O. Ikkala, M. Kauranen, and M. Kaivola, “Hydrogen-bonded polymer–azobenzene complexes: enhanced photoinduced birefringence with high temporal stability through interplay of intermolecular interactions,” Chem. Mater.20,6358–6363 (2008). [CrossRef]
  30. S. Wu, S. Duan, Z. Lei, W. Su, Z. Zhang, K. Wang, and Q. Zhang, “Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording,” J. Mater. Chem.20,5202–5209 (2010). [CrossRef]
  31. J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design,” J. Mater. Chem.21,15437–15441 (2011). [CrossRef]
  32. P. Politzer, J. S. Murray, and T. Clark, “Halogen bonding: an electrostatically-driven highly directional noncovalent interaction,” Phys. Chem. Chem. Phys.12,7748–7757 (2010). [CrossRef] [PubMed]
  33. P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, and G. Terraneo, “Halogen bonding in supramolecular chemistry,” Angew. Chem. Int. Ed.47,6114–6127 (2008). [CrossRef]
  34. C. J. Barrett, A. L. Natansohn, and P. L. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem.100,8836–8842 (1996). [CrossRef]
  35. V. Börger, H. Menzel, and M. R. Huber, “Influence of the molecular weight of azopolymers on the photo-induced formation of surface relief gratings,” Mol. Cryst. Liq. Cryst.430,89–97 (2005). [CrossRef]
  36. A. Priimagi, K. Lindfors, M. Kaivola, and P. Rochon, “Efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes,” ACS Appl. Mater. Interfaces1,1183–1189 (2009). [CrossRef]
  37. A. Archut, F. Vögtle, L. De Cola, G. C. Azzellini, V. Balzani, P. S. Ramanujam, and R. H. Berg, “Azobenzene-functionalized cascade molecules: photoswitchable supramolecular systems,” Chem. Eur. J.1,699–706 (1998). [CrossRef]
  38. K. Gharagozloo-Hubmann, O. Kulikovska, V. Börger, H. Menzel, and J. Stumpe, “Surface relief gratings in azobenzene-containing polymers with linear and star-branched architectures: a comparison,” Macromol. Chem. Phys.210,1809–1817 (2009). [CrossRef]
  39. R. Mezzenga, J. Ruokolainen, N. Canilho, E. Kasëmi, A. D. Schlüter, W. B. Lee, and G. H. Fredrickson, “Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals,” Soft Matter5,92–97 (2009). [CrossRef]
  40. N. Canilho, E. Kasëmi, A. D. Schlüter, and R. Mezzenga, “Comblike liquid-crystalline polymers from ionic complexation of dendronized polymers and lipids,” Macromolecules40,2822–2830 (2007). [CrossRef]
  41. A. J. Soininen, E. Kasëmi, A. D. Schlüter, O. Ikkala, J. Ruokolainen, and R. Mezzenga, “Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups,” J. Am. Chem. Soc.132,10882–10890 (2010). [CrossRef] [PubMed]
  42. S. Xiao, X. Lu, and Q. Lu, “Photosensitive polymer from ionic self-assembly of azobenzene dye and poly(ionic liquid) and its alignment characteristic toward liquid crystal molecules,” Macromolecules40,7944–7950 (2007). [CrossRef]
  43. Q. Zhang, C. G. Bazuin, and C. J. Barrett, “Simple spacer-free dye-polyelectrolyte ionic complex: side-chain liquid crystal order with high and stable photoinduced birefringence,” Chem. Mater.20,29–31 (2008). [CrossRef]
  44. R. Ahmed, A. Priimagi, C. F. J. Faul, and I. Manners, “Redox-active, organometallic surface-relief gratings from azobenzene-containing polyferrocenylsilane block copolymers,” Adv. Mater.24,926–931 (2012). [CrossRef] [PubMed]
  45. N. Canilho, E. Kasëmi, R. Mezzenga, and A. D. Schlüter, “Liquid-crystalline polymers from cationic dendronized polymer-anionic lipid complexes,” J. Am. Chem. Soc.128,13998–13999 (2006). [CrossRef] [PubMed]
  46. N. Canilho, E. Kasëmi, A. D. Schlüter, J. Ruokolainen, and R. Mezzenga, “Real space imaging and molecular packing of dendronized polymer-lipid supramolecular complexes,” Macromolecules40,7609–7616 (2007). [CrossRef]
  47. N. Canilho, E. Kasëmi, A. D. Schlüter, J. Ruokolainen, and R. Mezzenga, “Functional columnar liquid crystalline phases from ionic complexes of dendronized polymers and sulfate alkyl tails,” Macromol. Symp.270,58–64 (2008). [CrossRef]
  48. M. R. Hammond and R. Mezzenga, “Supramolecular routes towards liquid crystalline side-chain polymers,” Soft Matter4,952–961 (2008). [CrossRef]
  49. C. Li, A. D. Schlüter, A. Zhang, and R. Mezzenga, “A new level of hierarchical structure control by use of supramolecular self-assembled dendronized block copolymers,” Adv. Mater.20,4530–4534 (2008). [CrossRef]
  50. N. Merlet-Lacroix, J. Rao, A. Zhang, A. D. Schlüter, S. Bolisetty, J. Ruokolainen, and R. Mezzenga, “Controlling hierarchical self-assembly in supramolecular tailed-dendron systems,” Macromolecules43,4752–4760 (2010). [CrossRef]
  51. F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, “Azopolymer holographic diffraction gratings: time dependent analyses of the diffraction efficiency, birefringence, and surface modulation induced by two linearly polarized interfering beams,” J. Phys. Chem. B103,6690–6699 (1999). [CrossRef]
  52. A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B114,9751–9760 (2010). [CrossRef] [PubMed]
  53. H. Nakano, T. Tanino, T. Takahashi, H. Ando, and Y. Shirota, “Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials,” J. Mater. Chem.18,242–246 (2008). [CrossRef]
  54. L. M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Thin layers of low molecular azobenzene materials with effective light-induced mass transport,” Langmuir26,2214–2217 (2010). [CrossRef] [PubMed]
  55. A. Priimagi, M. Saccone, G. Cavallo, A. Shishido, T. Pilati, P. Metrangolo, and G. Resnati, “Photoalignment and Surface-relief-grating formation are efficiently combined in low-molecular-weight halogen-bonded complexes,” Adv. Mater.24,OP345–OP352 (2012). [CrossRef] [PubMed]
  56. S. Yang, L. Li, A. L. Cholli, J. Kumar, and S. K. Tripathy, “Photoinduced surface relief gratings on azocellulose films,” J. Macromol. Sci. A38,1345–1354 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited