OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 747–754

Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment

James A. Grant-Jacob, Benjamin Mills, Matthias Feinaeugle, Collin L. Sones, Gerrit Oosterhuis, Marc B. Hoppenbrouwers, and Robert W. Eason  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 747-754 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7833 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of laser-induced forward transfer (LIFT) in combination with a novel donor replenishment scheme to print continuous copper wires. Wires of mm length, a few microns wide and sub-micron in height have been printed using a 800 nm, 1 kHz repetition rate, 150 fs pulsed laser. A 120 nm thick copper donor was used along with laser pulse energy densities of 0.16-0.21 J cm−2 to print overlapping few-micron sized pads to form the millimeter long wires. The wires have a measured resistivity of 17 ± 4 times that of bulk copper.

© 2013 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Materials Processing

Original Manuscript: March 19, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 5, 2013
Published: May 8, 2013

James A. Grant-Jacob, Benjamin Mills, Matthias Feinaeugle, Collin L. Sones, Gerrit Oosterhuis, Marc B. Hoppenbrouwers, and Robert W. Eason, "Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment," Opt. Mater. Express 3, 747-754 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Jung and A. Westphal, “Zirconia thin film deposition on silicon by reactive gas flow sputtering: the influence of low energy particle bombardment,” Mater. Sci. Eng. A140, 528–533 (1991). [CrossRef]
  2. R. C. Jaeger, Introduction to Microelectronic Fabrication: Volume 5 of Modular Series on Solid State Devices (Prentice Hall 2002), Chap. 6.
  3. J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, and S. Mittler-Neher, “Selective gold deposition via CVD onto self-assembled organic monolayers,” Opt. Mater.9(1-4), 406–410 (1998). [CrossRef]
  4. J. A. M. Sondag-Huethorst, H. R. J. van Helleputte, and L. G. J. Fokkink, “Generation of electrochemically deposited metal patterns by means of electron beam (nano) lithography of self-assembled monolayer resists,” Appl. Phys. Lett.64(3), 285–287 (1994). [CrossRef]
  5. S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, “Focused helium ion beam milling and deposition,” Microelectron. Eng.88(8), 2452–2455 (2011). [CrossRef]
  6. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60(4), 1538–1539 (1986). [CrossRef]
  7. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett.89(19), 193107 (2006). [CrossRef]
  8. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys.66(1), 457–459 (1989). [CrossRef]
  9. H. Kim, G. P. Kushto, C. B. Arnold, Z. H. Kafafi, and A. Pique, “Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells,” Appl. Phys. Lett.85(3), 464–466 (2004). [CrossRef]
  10. P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,” Appl. Surf. Sci.151(3-4), 159–170 (1999). [CrossRef]
  11. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86(24), 244103 (2005). [CrossRef]
  12. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.66(5), 579–582 (1998). [CrossRef]
  13. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010). [CrossRef] [PubMed]
  14. M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N. N. Chu, D. W. Huang, H. P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology23(44), 444013 (2012). [CrossRef] [PubMed]
  15. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012). [CrossRef]
  16. M. Kandyla, S. Chatzandroulis, and I. Zergioti, “Laser induced forward transfer of conducting polymers,” Opto-Electron. Rev.18(4), 345–351 (2010). [CrossRef]
  17. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett.85(9), 1639–1641 (2004). [CrossRef]
  18. P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process.79(4-6), 949–952 (2004). [CrossRef]
  19. D. A. Willis and V. Grosu, “Evaporation and phase explosion during laser-induced forward transfer of aluminium,” Proc. SPIE5339, 304–312 (2004). [CrossRef]
  20. M. Feinaeugle, A. P. Alloncle, Ph. Delaporte, C. L. Sones, and R. W. Eason, “Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials,” Appl. Surf. Sci.258(22), 8475–8483 (2012). [CrossRef]
  21. C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process.101(2), 333–338 (2010). [CrossRef]
  22. B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia),” J. Appl. Phys.96(6), 3478–3481 (2004). [CrossRef]
  23. G. Oosterhuis, B. H. in't Veld, G. Ebberink, D. A. del Cerro, E. van den Eijnden, P. Chall, and B. van der Zon, “Additive interconnect fabrication by picosecond Laser Induced Forward Transfer,” in 3D Systems Integration Conference (3DIC), 2010 IEEE International (Institute of Electrical and Electronics Engineers, New York, 2010) pp. 1–5.
  24. B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films515(19), 7706–7711 (2007). [CrossRef]
  25. L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express19(22), 21563–21574 (2011). [CrossRef] [PubMed]
  26. R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng.2(1), 21–25 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited