OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 755–764

Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 755-764 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of single femtosecond laser pulse irradiation (130 fs pulse duration, 800 nm center wavelength) on the structure of binary lithium silicate glasses of varying chemical compositions were investigated by micro-Raman spectroscopy. Permanent modifications were generated at the surface of the glass samples with varying laser fluences in the ablative regime and evaluated for changes in the corresponding Raman band positions and bandwidths. For increasing laser fluences, the position of certain Raman bands changed, indicating an increase in the mass density of the glass inside the irradiated area. Simultaneously, the widths of all investigated bands increased, indicating a higher degree of disorder in the glass structure with respect to bond-angle and bond-length variations.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.2900) Materials : Optical storage materials
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Laser Materials Processing

Original Manuscript: November 29, 2012
Revised Manuscript: January 25, 2013
Manuscript Accepted: February 3, 2013
Published: May 8, 2013

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, "Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy," Opt. Mater. Express 3, 755-764 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett.83(15), 3030–3032 (2003). [CrossRef]
  2. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys., A Mater. Sci. Process.69(7), S763–S766 (1999). [CrossRef]
  3. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B19(10), 2496–2504 (2002). [CrossRef]
  4. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater.17(3), 379–386 (2001). [CrossRef]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  6. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process.76(5), 857–860 (2003). [CrossRef]
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  8. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003). [CrossRef]
  9. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron.4(5), 840–848 (1998). [CrossRef]
  10. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B27(5), 1065–1076 (2010). [CrossRef]
  11. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009). [CrossRef]
  12. T. Seuthe, M. Höfner, F. Reinhardt, W. J. Tsai, J. Bonse, M. Eberstein, H. J. Eichler, and M. Grehn, “Femtosecond laser-induced modification of potassium-magnesium silicate glasses: an analysis of structural changes by near edge x-ray absorption spectroscopy,” Appl. Phys. Lett.100(22), 224101 (2012). [CrossRef]
  13. M. Grehn, W. J. Tsai, M. Höfner, T. Seuthe, J. Bonse, A. Mermillod-Blondin, A. Rosenfeld, J. Hennig, A. W. Achtstein, C. Theiss, U. Woggon, M. Eberstein, and H. J. Eichler, “Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation,” AIP Conf. Proc.1464, 660–670 (2012). [CrossRef]
  14. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett.90(18), 181109 (2007). [CrossRef]
  15. S. A. Brawer and W. B. White, “Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates,” J. Chem. Phys.63(6), 2421–2432 (1975). [CrossRef]
  16. B. O. Mysen, D. Virgo, and C. M. Scarfe, “Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study,” Am. Mineral.65, 690–710 (1980).
  17. J. C. Phillips, “Structure and selectively enhanced Raman spectra of high-silica alkali ailicate glasses,” Phys. Rev. B32(8), 5350–5355 (1985). [CrossRef]
  18. T. Maehara, T. Yano, and S. Shibata, “Structural rules of phase separation in alkali silicate melts analyzed by high temperature Raman spectroscopy,” J. Non-Cryst. Solids351(49-51), 3685–3692 (2005). [CrossRef]
  19. J. Tan, S. Zhao, W. Wang, G. Davies, and X. Mo, “The effect of cooling rate on the structure of sodium silicate glass,” Mater. Sci. Eng. B106(3), 295–299 (2004). [CrossRef]
  20. L. Robinet, C. Coupry, K. Eremin, and C. Hall, “The use of Raman spectrometry to predict the stability of historic glasses,” J. Raman Spectrosc.37(7), 789–797 (2006). [CrossRef]
  21. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 367–372 (2003). [CrossRef]
  22. D. J. Little, M. Ams, S. Gross, P. Dekker, C. T. Miese, A. Fuerbach, and M. J. Withford, “Structural changes in BK7 glass upon exposure to femtosecond laser pulses,” J. Raman Spectrosc.42(4), 715–718 (2011). [CrossRef]
  23. D. Ehrt, T. Kittel, M. Will, S. Nolte, and A. Tünnermann, “Femtosecond-laser-writing in various glasses,” J. Non-Cryst. Solids345-346, 332–337 (2004). [CrossRef]
  24. H. Scholze, Glass—Nature, Structure and Properties (Springer-Verlag, 1988).
  25. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett.7(5), 196–198 (1982). [CrossRef] [PubMed]
  26. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007). [CrossRef]
  27. D. W. Matson, S. K. Sharma, and J. A. Philpotts, “The structure of high silica alkali silicate glasses—a Raman spectroscopic investigation,” J. Non-Cryst. Solids58(2-3), 323–352 (1983). [CrossRef]
  28. S. K. Sharma, J. F. Mammone, and M. F. Nicol, “Raman investigation of ring configurations in vitreous silica,” Nature292(5819), 140–141 (1981). [CrossRef]
  29. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963). [CrossRef]
  30. P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral.69, 622–644 (1984).
  31. N. Kitamura, K. Fukumi, H. Mizoguchi, M. Makihara, A. Higuchi, N. Ohno, and T. Fukunaga, “High pressure densification of lithium silicate glasses,” J. Non-Cryst. Solids274(1-3), 244–248 (2000). [CrossRef]
  32. G. S. Henderson, G. M. Bancroft, and M. E. Fleet, “Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order,” Am. Mineral.70, 946–960 (1985).
  33. B. O. Mysen and J. D. Frantz, “Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C,” Chem. Geol.96(3-4), 321–332 (1992). [CrossRef]
  34. B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994). [CrossRef]
  35. R. J. Hemley, H. K. Mao, P. M. Bell, and B. O. Mysen, “Raman spectroscopy of SiO2 glass at high pressure,” Phys. Rev. Lett.57(6), 747–750 (1986). [CrossRef] [PubMed]
  36. P. McMillan, B. T. Poe, P. Gillet, and B. Reynard, “A study of SiO2 glass and supercooled liquid to 1950 K via high temperature Raman spectroscopy,” Geochim. Cosmochim. Acta58(17), 3653–3664 (1994). [CrossRef]
  37. P. McMillan, B. Piriou, and R. Couty, “A Raman study of pressure-densified vitreous silica,” J. Chem. Phys.81(10), 4234–4236 (1984). [CrossRef]
  38. M. Okuno, B. Reynard, Y. Shimada, Y. Syono, and C. Willaime, “A Raman spectroscopic study of shock-wave densification of vitreous silica,” Phys. Chem. Miner.26(4), 304–311 (1999). [CrossRef]
  39. B. Hehlen, “Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra,” J. Phys. Condens. Matter22(2), 025401 (2010). [CrossRef] [PubMed]
  40. T. Deschamps, C. Martinet, D. R. Neuville, D. de Ligny, C. Coussa-Simon, and B. Champagnon, “Silica under hydrostatic pressure: a non continous medium behavior,” J. Non-Cryst. Solids355(48-49), 2422–2424 (2009). [CrossRef]
  41. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1(4), 605–613 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited