OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 765–776

Effect of thermal anneal on growth behavior of laser-induced damage sites on the exit surface of fused silica

Rajesh N. Raman, Raluca A. Negres, Manyalibo J. Matthews, and Christopher W. Carr  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 6, pp. 765-776 (2013)
http://dx.doi.org/10.1364/OME.3.000765


View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thermal anneal is known to arrest the growth of laser-induced damage in optical materials. However, the response of the material which leads to this observed behavior is poorly understood. In this work, we investigate the effect of isothermal anneal at 1100°C for 12 hours on the growth rate of laser-induced damage sites in fused silica. Growth rate was significantly lower for annealed initiated damage sites than that for untreated sites. This decrease in growth rate was associated with the closure of small surface and subsurface cracks, suggesting that aggressive growth rate is due, at least in part, to subsurface fracture complexity.

© 2013 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica
(180.0180) Microscopy : Microscopy
(240.6700) Optics at surfaces : Surfaces

ToC Category:
Laser-Induced Damage

History
Original Manuscript: March 26, 2013
Revised Manuscript: April 29, 2013
Manuscript Accepted: April 30, 2013
Published: May 10, 2013

Citation
Rajesh N. Raman, Raluca A. Negres, Manyalibo J. Matthews, and Christopher W. Carr, "Effect of thermal anneal on growth behavior of laser-induced damage sites on the exit surface of fused silica," Opt. Mater. Express 3, 765-776 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-6-765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage resistant fused silica optics,” Proc. SPIE4679, 56–68 (2002). [CrossRef]
  2. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011). [CrossRef]
  3. C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007). [CrossRef]
  4. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(Suppl 4), A859–A864 (2011). [CrossRef] [PubMed]
  5. G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003). [CrossRef]
  6. H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009). [CrossRef]
  7. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18(19), 19966–19976 (2010). [CrossRef] [PubMed]
  8. R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50(22), D12–D20 (2011). [CrossRef] [PubMed]
  9. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express20(12), 13030–13039 (2012). [CrossRef] [PubMed]
  10. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 omega (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006). [CrossRef]
  11. G. Hu, Y. Zhao, D. Li, Q. Xiao, J. Shao, and Z. Fan, “Studies of laser damage morphology reveal subsurface feature in fused silica,” Surf. Interface Anal.42(9), 1465–1468 (2010). [CrossRef]
  12. P. Hrma, W. T. Han, and A. R. Cooper, “Thermal healing of cracks in glass,” J. Non-Cryst. Solids102(1-3), 88–94 (1988). [CrossRef]
  13. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Fracture of fused silica with 351 nm laser-generated surface cracks,” J. Mater. Res.14(02), 597–605 (1999). [CrossRef]
  14. M. J. Matthews, J. S. Stolken, R. M. Vignes, M. A. Norton, S. Yang, J. D. Cooke, G. M. Guss, and J. J. Adams, “Residual stress and damage-induced critical fracture on CO2 laser treated fused silica,” Proc. SPIE7504, 750410, 750410-12 (2009). [CrossRef]
  15. T. K. Gupta, “Crack healing in Al2O3, MgO, and related materials,” in Advances in Ceramics, W. D. Kingery, ed. (American Ceramic Society, 1984), pp. 750–766.
  16. Y. A. Zagoruiko, “Modification of optical properties of ZnSe crystals by means of photothermal treatment,” Proc. SPIE3578, 480–483 (1999). [CrossRef]
  17. L. J. Atherton, F. Rainer, J. J. De Yoreo, I. M. Thomas, N. Zaitseva, and F. De Marco, “Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals,” Proc. SPIE2114, 36–45 (1994). [CrossRef]
  18. G. L. Tian, J. B. Huang, T. Wang, H. B. He, and J. D. Shao, “Microstructure and laser-induced damage threshold of ZrO2 coatings dependence on annealing temperature,” Appl. Surf. Sci.239(2), 201–208 (2005). [CrossRef]
  19. N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, W. A. Steele, M. D. Feit, and L. L. Wong, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng.51(12), 121817 (2012). [CrossRef]
  20. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009). [CrossRef]
  21. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt.21(18), 3249–3255 (1982). [CrossRef] [PubMed]
  22. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE4679, 40–47 (2002). [CrossRef]
  23. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010). [CrossRef]
  24. Corning, “HPFS(R) Fused Silica Standard Grade,” www.corning.com/assets/0/965/989/1081/4A3CF573-9901-4848-9E8F-C3BA500EA7B5.pdf (2003).
  25. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express20(10), 11561–11573 (2012). [CrossRef] [PubMed]
  26. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004). [CrossRef]
  27. V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of fused-silica with different hydroxyl contents,” Br. Ceram., Trans. J.90, 59–60 (1991).
  28. G. W. Scherer, Relaxation in Glass and Composites (Krieger, 1992).
  29. R. N. Raman, M. J. Matthews, J. J. Adams, and S. G. Demos, “Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express18(14), 15207–15215 (2010). [CrossRef] [PubMed]
  30. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998). [CrossRef]
  31. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett.82(19), 3230–3232 (2003). [CrossRef]
  32. R. A. B. Devine, “On the physical models of annealing of radiation-induced defects in amorphous SiO2,” Nucl. Instrum. Methods Phys. Res. B46(1-4), 261–264 (1990). [CrossRef]
  33. S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, J. Nishii, and H. Misawa, “Optically induced defects in vitreous silica,” Appl. Surf. Sci.154-155, 696–700 (2000). [CrossRef]
  34. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010). [CrossRef] [PubMed]
  35. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004). [CrossRef] [PubMed]
  36. M. D. Feit and A. M. Rubenchik, “Laser intensity modulation by nonabsorbing defects,” Proc. SPIE2966, 475–480 (1997). [CrossRef]
  37. W. W. Mullins, “Flattening of a nearly plane solid surface due to capillarity,” J. Appl. Phys.30(1), 77–83 (1959). [CrossRef]
  38. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41(1), 18–22 (1958). [CrossRef]
  39. C. F. Yen and R. L. Coble, “Spheroidization of tubular voids in Al2O3 crystals at high-temperatures,” J. Am. Ceram. Soc.55(10), 507–509 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited