OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 777–786

Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II-VI semiconductors

Tetyana Konak, Michael Tekavec, Vladimir V. Fedorov, and Sergey B. Mirov  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 777-786 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a comprehensive study of γ-irradiation on optical, electrical, and laser characteristics of pure and transition-metal doped single and polycrystalline ZnS and ZnSe. Polished pure, Cr-doped, and Ag, Au, Cu, Al, In, and Mn co-doped ZnS and ZnSe crystals after absorption and electro-conductivity characterization were γ-irradiated at doses of 1.28x108 rad at −3°C. Dynamic room temperature absorption studies, electro-conductivity measurements, and mid-IR lasing were performed after different exposition times of crystals at room temperature. Cr:ZnSe and Cr:ZnS lasers based on identical γ-irradiated and non-irradiated crystals featured very similar pump thresholds, slope efficiencies, and output powers. New fluorescence band spanning over 1.3-2.1 μm in the γ-irradiated Au:Cr:ZnS was attributed to 3A23T2(F) transition of Cr4+.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3380) Lasers and laser optics : Laser materials
(140.3460) Lasers and laser optics : Lasers
(160.3380) Materials : Laser materials
(160.6990) Materials : Transition-metal-doped materials
(350.5610) Other areas of optics : Radiation

ToC Category:
Laser Materials

Original Manuscript: March 4, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 25, 2013
Published: May 10, 2013

Tetyana Konak, Michael Tekavec, Vladimir V. Fedorov, and Sergey B. Mirov, "Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II-VI semiconductors," Opt. Mater. Express 3, 777-786 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys. Condens. Matter16(31), S3277–S3318 (2004). [CrossRef]
  2. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5-μm GaInNAsSb lasers,” IEEE J. Sel. Top. Quantum Electron.11(5), 1089–1098 (2005). [CrossRef]
  3. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the mid-wavelength infrared,” Appl. Phys. Lett.67(6), 757–759 (1995). [CrossRef]
  4. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “(In)GaAsN-GaAsSb type-II ‘W’ quantum-well lasers for emission at (λ=1.55 μm,),” Appl. Phys. Lett.83(14), 2742–2744 (2003). [CrossRef]
  5. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, “InP-based dilute-nitride mid-infrared type-II ‘W’ quantum-well lasers,” J. Appl. Phys.96(8), 4653–4655 (2004). [CrossRef]
  6. L. J. Mawst, J. Yu.-T. Huang, D. P. Xu, J. Y. Yeh, G. Tsvid, T. F. Kuech, and N. Tansu, “MOCVD grown dilute-nitride type-II quantum wells,” IEEE Sel. Top. Quantum Electron.14(4), 979–991 (2008). [CrossRef]
  7. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ : 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101(24), 241110 (2012). [CrossRef]
  8. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ: 3.4 μm and λ: 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012). [CrossRef]
  9. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996). [CrossRef]
  10. G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. O. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett.24(1), 19–21 (1999). [CrossRef] [PubMed]
  11. I. T. Sorokina, “Cr2+-doped II–VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004). [CrossRef]
  12. S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEE Proc., Optoelectron.150(4), 340–345 (2003). [CrossRef]
  13. S. Mirov, V. Fedorov, I. Moskalev, and D. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 810–822 (2007). [CrossRef]
  14. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev.4(1), 21–41 (2010). [CrossRef]
  15. V. I. Kozlovsky, V. A. Akimov, M. P. Frolov, Yu. V. Korostelin, A. I. Landman, V. P. Martovitsky, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and A. A. Voronov, “Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase,” Phys. Status Solidi B247(6), 1553–1556 (2010). [CrossRef]
  16. V. V. Fedorov, A. Gallian, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin.125(1-2), 184–195 (2007). [CrossRef]
  17. A. Halperin and R. Pinker, “Color centers in ZnS single crystals,” J. Chem. Phys.34(6), 2031–2035 (1961). [CrossRef]
  18. F. C. Rong, W. A. Barry, J. F. Donegan, and G. D. Watkins, “Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe,” Phys. Rev. B Condens. Matter54(11), 7779–7788 (1996). [CrossRef] [PubMed]
  19. K. Chow and G. Watkins, “Electronic structure and migrational properties of interstitial zinc in ZnSe,” Phys. Rev. B60(12), 8628–8639 (1999). [CrossRef]
  20. M. Karai, K. Kido, H. Naito, K. Kurosawa, M. Okuda, T. Fujino, and M. Kitagawa, “Defect states in ZnSe single crystals irradiated with gamma rays,” J. Appl. Phys.69(1), 291–298 (1991). [CrossRef]
  21. F. Rong and G. D. Watkins, “Optically detected magnetic-resonance observation of the isolated zinc interstitial in irradiated ZnSe,” Phys. Rev. Lett.58(14), 1486–1489 (1987). [CrossRef] [PubMed]
  22. G. Watkins, “EPR observation of close Frenkel pairs in irradiated ZnSe,” Phys. Rev. Lett.33(4), 223–225 (1974). [CrossRef]
  23. A. K. C. Ho and K. C. Kao, “The hall effect in gamma-irradiated ZnSe,” Radiat. Eff.17(1–2), 137–138 (1973). [CrossRef]
  24. R. Detweiler and B. Kulp, “Annealing of radiation damage in ZnSe,” Phys. Rev.146(2), 513–516 (1966). [CrossRef]
  25. B. Kulp and R. Detweiler, “Threshold for electron radiation damage in ZnSe,” Phys. Rev.129(6), 2422–2424 (1963). [CrossRef]
  26. M. M. Sychov, E. V. Komarov, L. V. Grigor’ev, S. V. Myakin, I. V. Vasil’eva, A. I. Kuznetsov, and V. P. Usacheva, “Modification of zinc sulfide phosphors by irradiation with gamma-ray photons and electrons,” Semiconductors40(9), 1016–1020 (2006). [CrossRef]
  27. C. Kim, J. M. Peppers, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Chromium doped ZnSe and ZnS gain media for optically and electrically pumped mid-IR lasers,” Proc. SPIE7193, 71932R, 71932R-11 (2009). [CrossRef]
  28. T. T. Basiev and S. B. Mirov, in Room Temperature Tunable Color Center Lasers, Laser Science and Technology Book Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, and H. Walter, eds. (Gordon and Breach Science Publishers/Harwood Academic Publishers, 1994), Vol. 16, pp. 1–160.
  29. P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, “Optical properties of ZnSe doped with Ag and Au,” Phys. Rev. B26(4), 2016–2035 (1982). [CrossRef]
  30. Y. Uehara, “Electronic structure of luminescence center of ZnS:Ag phosphors,” J. Chem. Phys.62(8), 2982–2995 (1975). [CrossRef]
  31. S. Emura and S. Masunaga, “Pressure effects on the absorption spectra of KBr:Ag+,” Phys. Rev. B Condens. Matter49(2), 849–853 (1994). [CrossRef] [PubMed]
  32. V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium‐activated forsterite for near‐infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett.53(26), 2590–2592 (1988). [CrossRef]
  33. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron.18(1), 73–74 (1988). [CrossRef]
  34. M. Yu. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Cr4+-doped Li2CaSiO4 crystal: growth and spectroscopic properties,” Opt. Commun.231(1-6), 273–280 (2004). [CrossRef]
  35. I. Broser, H. Maier, and H.-J. Schulz, “Fine structure of the infrared absorption and emission spectra of Cu2+ in ZnS and CdS crystals,” Phys. Rev.140(6A), A2135–A2138 (1965). [CrossRef]
  36. F. Träger, ed., Handbook of Lasers and Optics (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited