OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 813–820

Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes

Kuang-Yu Hsu, Mu-Han Yang, Dong-Yo Jheng, Chien-Chih Lai, Sheng-Lung Huang, Karl Mennemann, and Volker Dietrich  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 6, pp. 813-820 (2013)
http://dx.doi.org/10.1364/OME.3.000813


View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Yttrium aluminium garnet (YAG) crystal fibers with a core diameter of 40 μm were cladded by high index glasses using the co-drawing laser-heated pedestal growth method. Due to the extremely large cooling rates in the fabrication processes, unexpected and phenomenally large index drops of 0.018 and at least 0.02 were found from the as-grown capillary and the YAG crystal fiber cladding compared with bulk N-SF57’s, respectively. The high-index glass cladding is effective in reducing the number of guided modes, and the intensity profiles of the crystal fiber show there are only four guided modes at 532 nm.

© 2013 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(140.3510) Lasers and laser optics : Lasers, fiber
(160.2750) Materials : Glass and other amorphous materials
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Laser Materials

History
Original Manuscript: April 5, 2013
Revised Manuscript: April 30, 2013
Manuscript Accepted: May 10, 2013
Published: May 15, 2013

Citation
Kuang-Yu Hsu, Mu-Han Yang, Dong-Yo Jheng, Chien-Chih Lai, Sheng-Lung Huang, Karl Mennemann, and Volker Dietrich, "Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes," Opt. Mater. Express 3, 813-820 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-6-813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser heated miniature pedestal growth apparatus for single crystal optical fibers,” Rev. Sci. Instrum.55(11), 1791–1796 (1984). [CrossRef]
  2. C. A. Burrus and L. A. Coldren, “Growth of single-crystal sapphire-clad ruby fibers,” Appl. Phys. Lett.31(6), 383–385 (1977). [CrossRef]
  3. M. J. F. Digonnet, C. J. Gaeta, D. O'Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol.5(5), 642–646 (1987). [CrossRef]
  4. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004). [CrossRef] [PubMed]
  5. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008). [CrossRef] [PubMed]
  6. C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010). [CrossRef] [PubMed]
  7. Y. S. Lin, T. C. Cheng, C. C. Tsai, K. Y. Hsu, D. Y. Jheng, C. Y. Lo, P. S. Yeh, and S. L. Huang, “High-luminance white-light point source using Ce,Sm:YAG double-clad crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1494–1496 (2010). [CrossRef]
  8. C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett.36(6), 784–786 (2011). [CrossRef] [PubMed]
  9. K. Y. Hsu, D. Y. Jheng, Y. H. Liao, T. S. Ho, C. C. Lai, and S. L. Huang, “Diode-laser-pumped glass-clad Ti:sapphire crystal fiber based broadband light source,” IEEE Photon. Technol. Lett.24, 854–856 (2012).
  10. X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012). [CrossRef] [PubMed]
  11. X. Délen, L. Deyra, A. Benoit, M. Hanna, F. Balembois, B. Cocquelin, D. Sangla, F. Salin, J. Didierjean, and P. Georges, “Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm,” Opt. Lett.38(6), 995–997 (2013). [CrossRef] [PubMed]
  12. M. Matsukura, O. Nakamura, S. Watanabe, A. Miyamoto, Y. Furukawa, Y. Sato, T. Taira, T. Suzudo, and H. Mifune, “Laser properties of composite Nd:GdVO4 single crystal grown by the double die EFG method,” in Conference on Lasers and Electro-Optics (CLEO 2007) Technical Digest, Baltimore (US) (Optical Society of America, May, 2007), paper CFA2.
  13. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009). [CrossRef]
  14. I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, R. Peretti, F. Balembois, and P. Georges, “Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation,” Opt. Mater.32(9), 1251–1255 (2010). [CrossRef]
  15. N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “High efficiency, resonantly diode pumped, double-clad, Er:YAG-core, waveguide laser,” Opt. Express20(23), 25554–25561 (2012). [CrossRef] [PubMed]
  16. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), Chap. 3.
  17. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Appl. Opt.37(21), 4933–4935 (1998). [CrossRef] [PubMed]
  18. Schott AG data sheet.
  19. H. Bach and N. Nuroth, eds., The Properties of Optical Glass (Springer Verlag, 1995), Chap. 2.
  20. W. Koechner and M. Bass, Solid-State Lasers (Springer, 2003), Chap. 2.
  21. Schott Technical information TIE-29, Refractive Index and Dispersion (2007).
  22. J. Nishimura and K. Morishita, “Control of spectral characteristics of dispersive optical fibers by annealing,” J. Lightwave Technol.15(2), 294–298 (1997). [CrossRef]
  23. J. Stone and H. E. Earl, “Surface effects and reflection refractometry of optical fibres,” Opt. Quantum Electron.8(5), 459–463 (1976). [CrossRef]
  24. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron.15(1), 61–70 (2009). [CrossRef]
  25. H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” J. Lightwave Technol.24(3), 1350–1355 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited