OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 853–867

Effects of OH radicals and the silicon network on the lifetime of Eu3+-doped sodium silicate glasses

Rodrigo Ferreira de Morais, Elias Oliveira Serqueira, and Noelio Oliveira Dantas  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 853-867 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A set of sodium silicate glass matrices were synthesized to study the influence of Na2O concentration on the optical properties of Eu3+. The samples were characterized by optical absorption (OA), time and energy resolved photoluminescence and Fourier Transform Infrared (FTIR). We observed that decreasing sodium oxide concentration affects the absorption of OH radicals in the host matrix. Adjusting the obtained FTIR spectra by Gaussian functions, we observed the existence of two possible non-radiative transfer channels with the transition from the 5D0 to the 7F2 state of the Eu3+ ions. The first was produced by resonance with the 5th harmonic vibration of OH bonded radicals and the second by resonance with the 14th harmonic vibration of the silicon network. A decrease in OH radicals observed by FTIR was followed by an increase in the lifetime of the 5D0 state of the Eu3+ ions. However, resonance with higher harmonic orders did not affect the optical properties of the Eu3+ ions. Increases in the lifetime of this transition (~3.3 ms) were obtained from the synthesized sample with the lowest sodium oxide concentration. This lifetime is comparable with the well-known YAG system. Molecular dynamic results show that decreasing sodium oxide content in the host matrix produces structural changes such as decreases in non-bridge oxygen species, which may explain the decreases in OH radical absorption seen in the experimental results.

© 2013 OSA

OCIS Codes
(000.6800) General : Theoretical physics
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Glass and Other Amorphous Materials

Original Manuscript: January 14, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: March 26, 2013
Published: May 22, 2013

Rodrigo Ferreira de Morais, Elias Oliveira Serqueira, and Noelio Oliveira Dantas, "Effects of OH radicals and the silicon network on the lifetime of Eu3+-doped sodium silicate glasses," Opt. Mater. Express 3, 853-867 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Krishnapuram, S. K. Jakka, C. Thummala, and R. M. Lalapeta, “Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses,” J. Mol. Struct.1028, 170–175 (2012). [CrossRef]
  2. B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, and G. Zhang, “Intense red light emission of Eu3+-doped LiGd(PO3)4 for mercury-free lamps and plasma display panels application,” Opt. Express17(9), 7138–7144 (2009). [CrossRef] [PubMed]
  3. H. Guo, H. Zhang, R. Wei, M. Zheng, and L. Zhang, “Preparation, structural and luminescent properties of Ba2Gd2Si4O13:Eu3+ for white LEDs,” Opt. Express19(S2Suppl 2), A201–A206 (2011). [CrossRef] [PubMed]
  4. R. Peacock, “The intensities of lanthanide f ↔ f transitions,” in Rare Earths (Springer Berlin Heidelberg, 1975), pp. 83–122.
  5. E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids111(2-3), 205–213 (1989). [CrossRef]
  6. M. Kumar, T. K. Seshagiri, and S. V. Godbole, “Fluorescence lifetime and Judd–Ofelt parameters of Eu3+ doped SrBPO5,” Physica B410, 141–146 (2013). [CrossRef]
  7. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater.5(3), 159–167 (1996). [CrossRef]
  8. N. Vijaya and C. K. Jayasankar, “Structural and spectroscopic properties of Eu3+-doped zinc fluorophosphate glasses,” J. Mol. Struct.1036, 42–50 (2013). [CrossRef]
  9. Z. Hao, J. Zhang, X. Zhang, and X. Wang, “CaSc2O4:Eu3+: a tunable full-color emitting phosphor for white light emitting diodes,” Opt. Mater.33(3), 355–358 (2011). [CrossRef]
  10. H. Desirena, E. De la Rosa, L. A. Díaz-Torres, and G. A. Kumar, “Concentration effect of Er3+ ion on the spectroscopic properties of Er3+ and Yb3+/Er3+ co-doped phosphate glasses,” Opt. Mater.28(5), 560–568 (2006). [CrossRef]
  11. K. K. Pukhov, T. T. Basiev, Y. V. Orlovskii, and M. Glasbeek, “Multiphonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals,” J. Lumin.76–77, 586–590 (1998). [CrossRef]
  12. Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, and H. Song, “Highly modified spontaneous emissions in YVO4:Er3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012). [CrossRef]
  13. M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” J. Lumin.65(5), 227–245 (1995). [CrossRef]
  14. M. C. Paul, S. Bysakh, S. Das, S. K. Bhadra, M. Pal, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform,” Mater. Sci. Eng. B175(2), 108–119 (2010). [CrossRef]
  15. G. Cormier, J. A. Capobianco, and A. Monteil, “Molecular dynamics simulation of the trivalent europium ion doped in silica and sodium disilicate glasses,” J. Non-Cryst. Solids152(2-3), 225–236 (1993). [CrossRef]
  16. N. D. Afify and G. Mountjoy, “Molecular-dynamics modeling of Eu3+-ion clustering in SiO2 glass,” Phys. Rev. B79(2), 024202 (2009). [CrossRef]
  17. J. Du and A. N. Cormack, “The structure of erbium doped sodium silicate glasses,” J. Non-Cryst. Solids351(27-29), 2263–2276 (2005). [CrossRef]
  18. L. Kokou and J. Du, “Rare earth ion clustering behavior in europium doped silicate glasses: Simulation size and glass structure effect,” J. Non-Cryst. Solids358(24), 3408–3417 (2012). [CrossRef]
  19. I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, “DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism,” J. Mater. Chem.16(20), 1911–1918 (2006). [CrossRef]
  20. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys.81(8), 3684–3690 (1984). [CrossRef]
  21. J. Du and L. Kokou, “Europium environment and clustering in europium doped silica and sodium silicate glasses,” J. Non-Cryst. Solids357(11-13), 2235–2240 (2011). [CrossRef]
  22. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: a package for building initial configurations for molecular dynamics simulations,” J. Comput. Chem.30(13), 2157–2164 (2009). [CrossRef] [PubMed]
  23. Y. Bai, Y. Wang, K. Yang, X. Zhang, G. Peng, Y. Song, Z. Pan, and C. H. Wang, “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” J. Phys. Chem. C112(32), 12259–12263 (2008). [CrossRef]
  24. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3,” in Argonne National Laboratory Report(1977).
  25. K. K. Haldar and A. Patra, “Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles,” Appl. Phys. Lett.95(6), 063103 (2009). [CrossRef]
  26. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996). [CrossRef]
  27. J. Nawrocki, “The silanol group and its role in liquid chromatography,” J. Chromatogr. A779(1-2), 29–71 (1997). [CrossRef]
  28. S. N. B. Bhaktha, F. Beclin, M. Bouazaoui, B. Capoen, A. Chiasera, M. Ferrari, C. Kinowski, G. C. Righini, O. Robbe, and S. Turrell, “Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content,” Appl. Phys. Lett.93(21), 211904 (2008). [CrossRef]
  29. S. W. Park, H. Kyoung Yang, J. Won Chung, Y. Chen, B. Kee Moon, B. Chun Choi, J. H. Jeong, and J. Hwan Kim, “Photoluminescent properties of LaVO4:Eu3+ by structural transformation,” Physica B405(18), 4040–4044 (2010). [CrossRef]
  30. H. C. Jung, J. Y. Park, G. Seeta Rama Raju, J. H. Jeong, B. K. Moon, J. H. Kim, and H. Y. Choi, “Crystalline structure dependence of luminescent properties of Eu3+-activated Y2O3–Al2O3 system phosphors,” Curr. Appl. Phys.9(3), S217–S221 (2009). [CrossRef]
  31. A. M. B. Silva, C. M. Queiroz, S. Agathopoulos, R. N. Correia, M. H. V. Fernandes, and J. M. Oliveira, “Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR,” J. Mol. Struct.986(1-3), 16–21 (2011). [CrossRef]
  32. B. O. Mysen and J. D. Frantz, “Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units,” Contrib. Mineral. Petrol.117(1), 1–14 (1994). [CrossRef]
  33. A. G. Kalampounias, “IR and Raman spectroscopic studies of sol–gel derived alkaline-earth,” Bull. Mater. Sci.34(2), 299–303 (2011). [CrossRef]
  34. E. Potapova, M. Grahn, A. Holmgren, and J. Hedlund, “The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy,” J. Colloid Interface Sci.345(1), 96–102 (2010). [CrossRef] [PubMed]
  35. J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, “Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses,” J. Lumin.106(1), 9–14 (2004). [CrossRef]
  36. J. Bajer and A. Miranowicz, “Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing,” J. Opt. B Quantum Semiclassical Opt.3(4), 251–259 (2001). [CrossRef]
  37. G. Liu and B. Jacquier, “Spectroscopic properties of rare earths in optical materials,” in Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005), p. 550.
  38. T. Qin, G. Mountjoy, N. Afify, M. Reid, Y. Yeung, A. Speghini, and M. Bettinelli, “Link between optical spectra, crystal-field parameters, and local environments of Eu3+ ions in Eu2O3-doped sodium disilicate glass,” Phys. Rev. B84(10), 104206 (2011). [CrossRef]
  39. J. Jin, T. Yoko, F. Miyaji, S. Sakka, T. Fukunaga, and M. Misawa, “Neutron diffraction study on the structure of Na-Si-O-N oxynitride glasses,” J. Am. Ceram. Soc.76(3), 630–634 (1993). [CrossRef]
  40. J. A. Johnson, C. J. Benmore, D. Holland, J. Du, B. Beuneu, and A. Mekki, “Influence of rare-earth ions on SiO2-Na2O-RE2O3 glass structure,” J. Phys. Condens. Matter23(6), 065404 (2011). [CrossRef] [PubMed]
  41. J. Zarzycki, W. D. Scott, and C. Massart, Glasses and the Vitreous State (Cambridge University Press, 1991).
  42. R. Prasada Rao, T. D. Tho, and S. Adams, “Ion transport pathways in molecular dynamics simulated alkali silicate glassy electrolytes,” Solid State Ion.192(1), 25–29 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited