OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 884–892

Spectroscopic characterization of erbium doped glass ceramic

Indumathi Kamma, Monday Mbila, Karen E. Steege Gall, and B. Rami Reddy  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 6, pp. 884-892 (2013)
http://dx.doi.org/10.1364/OME.3.000884


View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Erbium doped oxyfluoride glass was synthesized from the molar composition 10.1% Na2CO3 −20.2% PbO −33.7% GeO2 −33.6% TeO2 −2.4% ErF3 by melt quenching technique. The Judd-Ofelt intensity parameters were estimated as Ω2 = 10.8 × 10−20, Ω4 = 1.17 × 10−20, and Ω6 = 4.32 × 10−20 cm2. Radiative transition probabilities and lifetimes were also calculated. Differential scanning calorimetry (DSC) was used for thermal analysis of the sample. Nanocrystals were induced in the glass by heat-treatment. Strong room temperature upconversion emissions were observed at 415, 540, 554 and 667 nm from Er3+ doped sample under 972 nm Ti-sapphire laser excitation. X-ray diffraction (XRD) measurements revealed the presence of NaErF4 crystallites 35 nm in the glassy matrix. The concentration of nanocrystals is found to be low in the middle of the sample and higher close to the surface. Time correlated single photon counting (TCSPC) was used to measure Er3+ lifetimes.

© 2013 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.4670) Materials : Optical materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(160.4236) Materials : Nanomaterials

ToC Category:
Rare-Earth-Doped Materials

History
Original Manuscript: March 18, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 29, 2013
Published: May 30, 2013

Virtual Issues
Optical Ceramics (2013) Optical Materials Express

Citation
Indumathi Kamma, Monday Mbila, Karen E. Steege Gall, and B. Rami Reddy, "Spectroscopic characterization of erbium doped glass ceramic," Opt. Mater. Express 3, 884-892 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-6-884


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Suzuki, S. Masaki, K. Mizuno, and Y. Ohishi, “Synthesis and luminescent properties of transparent oxyfluoride glass-ceramics containing Er3+:YLiF4 nanocrystals,” Appl. Phys. Express3(7), 072601 (2010). [CrossRef]
  2. L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter20(14), 145201 (2008). [CrossRef]
  3. M. Beggiora, I. M. Reaney, A. B. Seddon, D. Furniss, and S. A. Tikhomirova, “Phase evolution in oxy-fluoride glass ceramics,” J. Non-Cryst. Solids326-327, 476–483 (2003). [CrossRef]
  4. F. Auzel, D. Pecile, and D. Morin, “Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up-conversion,” J. Electrochem. Soc.122(1), 101–107 (1975). [CrossRef]
  5. M. J. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers (Dekker, 1993).
  6. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphates glasses,” Phys. Rev. B45(9), 4620–4625 (1992). [CrossRef]
  7. M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids239(1-3), 149–155 (1998). [CrossRef]
  8. G. Jones and S. N. Houde-Walter, “Upconversion mechanisms in an erbium-doped transparent glass ceramic,” J. Opt. Soc. Am. B22(4), 825–830 (2005). [CrossRef]
  9. S. Tanabe, H. Hayashi, T. Hanada, and N. Onodera, “Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals,” Opt. Mater.19(3), 343–349 (2002). [CrossRef]
  10. S. Nielsen, W. D. Lawson, and A. F. Fray, “Some infrared transmitting glasses containing germanium dioxide,” Infrared Phys.1(1), 21–26 (1961). [CrossRef]
  11. C. B. de Araújo, L. R. P. Kassab, R. A. Kobayashi, L. P. Naranjo, and P. A. Santa Cruz, “Luminescence enhancement of Pb2+ ions in TeO2-PbO-GeO2 glasses containing silver nanostructures,” J. Appl. Phys.99(12), 123522 (2006). [CrossRef]
  12. G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B55(10), 6335–6342 (1997). [CrossRef]
  13. B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett.64(11), 1327–1329 (1994). [CrossRef]
  14. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter46(6), 3305–3310 (1992). [CrossRef] [PubMed]
  15. K. Hirao, S. Todoroki, and N. Soga, “CW room temperature upconversion lasing in Er3+-doped fluoride glass fiber,” J. Non-Cryst. Solids143, 40–45 (1992). [CrossRef]
  16. Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006). [CrossRef]
  17. S. Yang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability and optical transition of Er3+ in sodium-lead-germanate glasses,” J. Mater. Sci.39(11), 3641–3646 (2004). [CrossRef]
  18. S. Bommareddi, M. Dokhanian, and B. R. Reddy, “Energy upconversion in erbium doped sodium lead germano tellurite glass,” Phys. Status Solidi C6(S1), S67–S70 (2009). [CrossRef]
  19. X. S. Qiao, X. P. Fan, J. Wang, and M. Q. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys.99(7), 074302 (2006). [CrossRef]
  20. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory Rep. ANL-78–95 (Argonne National Laboratory, 1979).
  21. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev.157(2), 262–272 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited