OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 6 — Jun. 1, 2013
  • pp: 893–903

Transparent, luminescent terbium doped zirconia: development of optical-structural ceramics with integrated temperature measurement functionalities

C. L. Hardin, Y. Kodera, S. A. Basun, D. R. Evans, and J. E. Garay  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 6, pp. 893-903 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for the preparation of transparent Tb doped zirconia (Tb:ZrO2) ceramics that luminesce in the visible. The visible luminescence is temperature dependent, yielding samples that have integrated temperatures sensing capabilities. Our approach is to simultaneously react and densify ZrO2 and Tb4O7 using current activated pressure assisted densification (CAPAD). The Tb dopant serves to both stabilize the tetragonal phase of zirconia and for emitting light. The Tb:ZrO2 ceramics have an excellent combination of structural and optical properties; the toughness is comparable to yttria stabilized zirconia and the transparency in the visible is high. Moreover, the luminescent lifetimes are long and amenable to luminescent thermometry. The ceramics have promise as thermal barrier materials and high-strength windows with “built-in” temperature measurement capabilities.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(160.4236) Materials : Nanomaterials

ToC Category:
Rare-Earth-Doped Materials

Original Manuscript: March 28, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 21, 2013
Published: May 31, 2013

Virtual Issues
Optical Ceramics (2013) Optical Materials Express

C. L. Hardin, Y. Kodera, S. A. Basun, D. R. Evans, and J. E. Garay, "Transparent, luminescent terbium doped zirconia: development of optical-structural ceramics with integrated temperature measurement functionalities," Opt. Mater. Express 3, 893-903 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Ghosh, D. Teweldebrhan, J. R. Morales, J. E. Garay, and A. A. Balandin, “Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia,” J. Appl. Phys.106(11), 113507 (2009). [CrossRef]
  2. J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater.32(1), 62–68 (2009). [CrossRef]
  3. S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater.58(6), 516–519 (2008). [CrossRef]
  4. E. H. Penilla, Y. Kodera, and J. E. Garay, “Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD),” Mater. Sci. Eng. B177(14), 1178–1187 (2012). [CrossRef]
  5. A. T. Wieg, Y. Kodera, Z. Wang, T. Imai, C. Dames, and J. E. Garay, “Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity,” Appl. Phys. Lett.101(11), 111903 (2012). [CrossRef]
  6. M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res.39(1), 325–359 (2009). [CrossRef]
  7. M. M. Gentleman and D. R. Clarke, “Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings,” Surf. Coat. Tech.200(5-6), 1264–1269 (2005). [CrossRef]
  8. Y. Shen, M. D. Chambers, and D. R. Clarke, “Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ,” Surf. Coat. Tech.203(5-7), 456–460 (2008). [CrossRef]
  9. M. D. Chambers and D. R. Clarke, “Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials,” Surf. Coat. Tech.202(4-7), 688–692 (2007). [CrossRef]
  10. S. Gutzov and W. Assmus, “The luminescence of holmium doped cubic yttria-stabilized zirconia,” J. Mater. Sci. Lett.19(4), 275–277 (2000). [CrossRef]
  11. Y. Kodera, C. L. Hardin, and J. E. Garay, “Transmitting, emitting and controlling light: processing of transparent ceramics using current activated pressure assisted densification,” Scr. Mater. (to be published).
  12. J. E. Garay, “Current activated pressure assisted densification of materials,” Annu. Rev. Mater. Res.40(1), 445–468 (2010). [CrossRef]
  13. K. Niihara, R. Morena, and D. Hasselman, “Evaluation of Kic of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci.1, 13–16 (1982).
  14. G. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc.64(9), 533–538 (1981). [CrossRef]
  15. R. P. Ingel and D. Lewis, “Lattice parameters and density for Y2O3-stabilized ZrO2,” J. Am. Ceram. Soc.69(4), 325–332 (1986). [CrossRef]
  16. P. Manning, J. Sirman, R. De Souza, and J. Kilner, “The kinetics of oxygen transport in 9.5 mol% single crystal yttria stabilised zirconia,” Solid State Ion.100(1-2), 1–10 (1997). [CrossRef]
  17. V. B. Vykhodets, T. E. Kurennykh, G. Kesarev, M. V. Kuznetsov, V. V. Kondrat’ev, C. Hülsen, and U. Koester, “Diffusion of insoluble carbon in zirconium oxides,” JETP Lett.93(1), 5–9 (2011). [CrossRef]
  18. M. Kilo, M. A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, “Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia,” J. Appl. Phys.94(12), 7547–7552 (2003). [CrossRef]
  19. J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence,” J. Am. Ceram. Soc.94(6), 1850–1858 (2011). [CrossRef]
  20. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited