OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 7 — Jul. 1, 2013
  • pp: 968–976

Augmented sensitivity of an IR-absorption gas sensor employing a metal hole array

Yoshiaki Nishijima, Yuta Adachi, Lorenzo Rosa, and Saulius Juodkazis  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 7, pp. 968-976 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2905 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of plasmonic extraordinary transmission at IR wavelengths for surface-enhanced infrared absorption (SEIRA) spectroscopy in gas sensing. Gas detection was performed through non-dispersive infrared (NDIR) absorption. The sensitivity of SF6 gas detection is increased around ∼27 times with metal hole array (MHA) microstructures placed on the gas cell mirrors, as compared with non-structured mirrors; an absorption change of 2% per 100 ppm was obtained on a standard commercial pyroelectric detector. Down-sizing of IR-sensors to a sub-1 mm gas cell width, delivering ∼ 40 nM (or 1 ppm) of SF6 sensitivity, can be foreseen with a simple source-detector setup.

© 2013 OSA

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6680) Optics at surfaces : Surface plasmons
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:

Original Manuscript: March 25, 2013
Revised Manuscript: May 26, 2013
Manuscript Accepted: May 29, 2013
Published: June 13, 2013

Yoshiaki Nishijima, Yuta Adachi, Lorenzo Rosa, and Saulius Juodkazis, "Augmented sensitivity of an IR-absorption gas sensor employing a metal hole array," Opt. Mater. Express 3, 968-976 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kumar, J. Huang, J. R. Cushnir, P. Spanel, D. Smith, and G. B. Hanna, “Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-exophageal cancer,” Anal. Chem.84, 9550–9557 (2012). [PubMed]
  2. M. Ueda, N. Teshima, and T. Sakai, “Development of formaldehyde standard gas generator based on gravitational dispensing-vaporization and its application to breath formaldehyde determination,” Bunseki Kagaku57, 605–612 (2008). [CrossRef]
  3. M. Zhang, H. C. Su, Y. Rheem, C. M. Hangarter, and N. V. Myung, “A rapid room-temperature NO2sensor based on tellurium-SWNT hybrid nanostructures,” J. Phys. Chem. C116, 20067–20074 (2012). [CrossRef]
  4. J. Hodgkinson, R. Smith, W. O. Hob, J. R. Saffell, and R. Tatam, “A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 mm,” Proc. SPIE8439, 843919 (2012). [CrossRef]
  5. N. Ohta, K. Nomura, and I. Yagi, “Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface-enhanced infrared absorption (SEIRA) spectroscopy,” Langmuir26, 18097–18104 (2010). [CrossRef] [PubMed]
  6. H. Miyatake, E. Hosono, M. Osawa, and T. Okada, “Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes,” Chem. Phys. Lett.428, 451–456 (2006). [CrossRef]
  7. H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano1, 669–675 (2013). [CrossRef]
  8. Y. Nishijima, H. Nigorinuma, L. Rosa, and S. Juodkazis, “Selective enhancement of infrared absorption with metal hole arrays,” Opt. Mater. Express2, 1367–1377 (2012). [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature351, 667–669 (1998). [CrossRef]
  10. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007). [CrossRef] [PubMed]
  11. E. Popov, M. Neviere, S. Enoch, and R. Reinisc, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62, 16100–16108 (2000). [CrossRef]
  12. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335–2339 (2005). [CrossRef] [PubMed]
  13. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004). [CrossRef]
  14. H. Rigneault, J. Capoulade, J. Dintinger, J. Wegner, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005). [CrossRef] [PubMed]
  15. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B68, 201306 (2003).
  16. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schltz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
  17. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16, 1743–1748 (1999). [CrossRef]
  18. G. Gervinskas, D. Day, and S. Juodkazis, “High-precision interferometric monitoring of polymer swelling using a simple optofluidic sensor,” Sens. Actuators B159, 39–43 (2011). [CrossRef]
  19. M. L. Kurth and D. K. Gramotnev, “Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes,” Microfluid. Nanofluid.14, 743–751 (2013). [CrossRef]
  20. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited