OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1007–1019

Photonic properties of titania inverse opal heterostructures

Hooi Sing Lee, Roman Kubrin, Robert Zierold, Alexander Yu. Petrov, Kornelius Nielsch, Gerold A. Schneider, and Manfred Eich  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1007-1019 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Titania inverse opal heterostructures demonstrating two distinctive photonic stopgaps were fabricated by repetitive vertical self-assembly and atomic layer deposition (ALD). Angle resolved reflectance measurements of the inverse opal heterostructure are reported for the first time. The comparison with the spectra of constituents show that the ΓL stopgaps of the heterostructure obey the superposition principle and the angular dispersion of their stopgaps is well-fitted with the modified Bragg’s law at low incidence angles. Numerical simulations were used to predict the dominant features in the reflectance spectra. The total (specular and diffuse) transmission and reflectance measurements of the single inverse opals and the heterostructure reveal that the diffuse scattering could severely impair the photonic properties of the buried layers in the multi-stack photonic crystal (PhC) configurations. Ascending stacking is proposed as a means to improve the performance of the multi-layer coatings.

© 2013 OSA

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals
(310.6188) Thin films : Spectral properties

ToC Category:
Photonic Crystals

Original Manuscript: February 11, 2013
Revised Manuscript: May 24, 2013
Manuscript Accepted: May 24, 2013
Published: July 2, 2013

Virtual Issues
Optical Ceramics (2013) Optical Materials Express

Hooi Sing Lee, Roman Kubrin, Robert Zierold, Alexander Yu. Petrov, Kornelius Nielsch, Gerold A. Schneider, and Manfred Eich, "Photonic properties of titania inverse opal heterostructures," Opt. Mater. Express 3, 1007-1019 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. V. Braun, S. A. Rinne, and F. García-Santamaría, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater.18(20), 2665–2678 (2006). [CrossRef]
  2. K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol.17(2), 72–82 (2006). [CrossRef]
  3. J. Ballato and A. James, “A ceramic photonic crystal temperature sensor,” J. Am. Ceram. Soc.82(8), 2273–2275 (1999). [CrossRef]
  4. A. Sutti, C. Baratto, G. Calestani, C. Dionigi, M. Ferroni, G. Faglia, and G. Sberveglieri, “Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases,” in Proceedings of the Eleventh International Meeting on Chemical Sensors IMCS-11 IMCS 2006 IMCS 11 130 (2008), pp. 567–573. [CrossRef]
  5. A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A205(12), 2796–2810 (2008). [CrossRef]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  7. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A.107(23), 10354–10359 (2010). [CrossRef] [PubMed]
  8. A.-J. Wang, S.-L. Chen, P. Dong, X.-G. Cai, Q. Zhou, G.-M. Yuan, C.-T. Hu, and D.-Z. Zhng, “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method,” Chin. Phys. Lett.26(2), 024210 (2009). [CrossRef]
  9. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater.13(6), 389–393 (2001). [CrossRef]
  10. R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys.102(5), 056102 (2007). [CrossRef]
  11. Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang, “Layer transfer approach to opaline hetero photonic crystals,” Langmuir24(5), 1796–1800 (2008). [CrossRef] [PubMed]
  12. W. Khunsin, S. G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentell, “Optical transmission in triple-film hetero-opals,” J. Appl. Phys.104(1), 013527 (2008). [CrossRef]
  13. Z.-Q. Liu, T.-H. Feng, Q.-F. Dai, L.-J. Wu, and L. Sheng, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chinese Physics B18(6), 2383–2388 (2009). [CrossRef]
  14. S. G. Romanov, M. Egen, R. Zentel, and C. M. Sotomayor Torres, “Propagation and scattering of light in opal heterojunctions,” in Proceedings of the 12th International Conference on Modulated Semiconductor Structures Proceedings of the 12th International Conference on Modulated Semiconductor Structures (2006), Vol. 32, pp. 476–479. [CrossRef]
  15. C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, 2001).
  16. A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C112(1), 13–17 (2008). [CrossRef]
  17. D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, “Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts,” Appl. Phys. Lett.95(9), 091101 (2009). [CrossRef]
  18. A. Wang, S.-L. Chen, P. Dong, and Z. Zhou, “Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors,” Synth. Met.161(5-6), 504–507 (2011). [CrossRef]
  19. Z. Cai, Y. J. Liu, J. Teng, and X. Lu, “Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres,” ACS Appl. Mater. Interfaces4(10), 5562–5569 (2012). [CrossRef] [PubMed]
  20. H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. Schneider, and M. Eich, “Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals,” J. Opt. Soc. Am. B29(3), 450–457 (2012). [CrossRef]
  21. R. Kubrin, H. S. Lee, R. Zierold, A. Yu. Petrov, R. Janssen, K. Nielsch, M. Eich, and G. A. Schneider, “Stacking of ceramic inverse opals with different lattice constants,” J. Am. Ceram. Soc.95(7), 2226–2235 (2012). [CrossRef]
  22. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  23. Available at www.cst.com .
  24. A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B22(5), 1075–1084 (2005). [CrossRef]
  25. H. M. van Driel and W. L. Vos, “Multiple Bragg wave coupling in photonic band-gap crystals,” Phys. Rev. B62(15), 9872–9875 (2000). [CrossRef]
  26. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, “Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.63(5), 056603 (2001). [CrossRef] [PubMed]
  27. J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and C. López, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B68(11), 115109 (2003). [CrossRef]
  28. M. Ishii, M. Harada, A. Tsukigase, and H. Nakamura, “Three-dimensional structure analysis of opaline photonic crystals by angle-resolved reflection spectroscopy,” J. Opt. A9(9), S372–S376 (2007). [CrossRef]
  29. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002). [CrossRef]
  30. Y. Cao, Y. Wang, Y. Zhu, H. Chen, Z. Li, J. Ding, and Y. Chi, “Fabrication of anatase titania inverse opal films using polystyrene templates,” Superlattices Microstruct.40(3), 155–160 (2006). [CrossRef]
  31. M. Lanata, M. Cherchi, A. Zappettini, S. M. Pietralunga, and M. Martinelli, “Titania inverse opals for infrared optical applications,” Opt. Mater.17(1-2), 11–14 (2001). [CrossRef]
  32. J. E. G. J. Wijnhoven, L. Bechger, and W. L. Vos, “Fabrication and characterization of large macroporous photonic crystals in titania,” Chem. Mater.13(12), 4486–4499 (2001). [CrossRef]
  33. J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater.17(8), 1010–1013 (2005). [CrossRef]
  34. Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals,” Appl. Phys. Lett.76(12), 1627–1629 (2000). [CrossRef]
  35. J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: effects of disorder,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(3 Pt 2B), 036616 (2002). [CrossRef] [PubMed]
  36. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72(15), 153102 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited