OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1020–1025

Terahertz metamaterial absorbers with an embedded resistive layer

Brian Kearney, Fabio Alves, Dragoslav Grbovic, and Gamani Karunasiri  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 8, pp. 1020-1025 (2013)
http://dx.doi.org/10.1364/OME.3.001020


View Full Text Article

Acrobat PDF (903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A conductive layer of Ti, with a sheet resistance of about 220 Ω/sq, was placed in the dielectric spacer of an Al/SiOx/Al metamaterial terahertz absorber at various depths to probe the effect on the absorption of terahertz radiation. For a square size of 15 µm and a periodicity of 21 µm, and dielectric thickness approximately 1.6 µm, maximum absorption was 60%, 88%, and 94% for Ti layers 297, 765, and 1270 nm deep into the SiOx. Finite element simulations of the absorption correlated well with that of the measurements. This indicates that metamaterials with an embedded high temperature coefficient of resistance (TCR) conducting layer can be used for fabrication of microbolometers with tuned spectral sensitivity.

© 2013 OSA

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 22, 2013
Revised Manuscript: June 3, 2013
Manuscript Accepted: June 5, 2013
Published: July 2, 2013

Citation
Brian Kearney, Fabio Alves, Dragoslav Grbovic, and Gamani Karunasiri, "Terahertz metamaterial absorbers with an embedded resistive layer," Opt. Mater. Express 3, 1020-1025 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-8-1020


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol.25(1), 40–46 (2012). [CrossRef]
  2. K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, and T. Sudoh, “Real-time terahertz imaging for art conservation science,” J. Eur. Opt. Soc. Rapid Publ.3, 08027 (2008). [CrossRef]
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005). [CrossRef]
  4. S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006). [CrossRef]
  5. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett.33(11), 1258–1260 (2008). [CrossRef] [PubMed]
  6. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003). [CrossRef] [PubMed]
  7. A. G. Davies and E. H. Linfield, “Bridging the terahertz gap,” Phys. World14, 37–41 (2004).
  8. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005). [CrossRef] [PubMed]
  9. A. W. M. Lee, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006). [CrossRef]
  10. B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlin, P. R. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE6549, 65490C, 65490C–7 (2007). [CrossRef]
  11. N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, “Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays,” Proc. SPIE6940, 69402Y, 69402Y–12 (2008). [CrossRef]
  12. Z. Yin and F. W. Smith, “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis,” Phys. Rev. B Condens. Matter42(6), 3666–3675 (1990). [CrossRef] [PubMed]
  13. H. Budzier and G. Gerlach, Thermal Infrared Sensors: Theory, Optimization and Practice (Wiley, 2011), Chap. 6.
  14. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater.24(23), OP98–OP120, OP181 (2012) (and references therein). [CrossRef] [PubMed]
  15. B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013). [CrossRef]
  16. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett.37(11), 1886–1888 (2012). [CrossRef] [PubMed]
  17. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett.35(22), 3766–3768 (2010). [CrossRef] [PubMed]
  18. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009). [CrossRef] [PubMed]
  19. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011). [CrossRef]
  20. F. Alves, A. Karamitros, D. Grbovic, B. Kearney, and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng.51(6), 063801 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited