OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1039–1048

Silicon micro-structure and ZnO nanowire hierarchical assortments for light management

B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1039-1048 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present fabrication and optical characterization of Si microstructure-ZnO nanowire (NWs) hierarchical structures for light management. Random and periodic hierarchical structures constituting Si micro pillar or micro pyramid arrays with overgrown ZnO NWs have been fabricated. Inexpensive colloidal lithography in combination with dry and wet chemical etching is used to fabricate Si microstructures, and ZnO NWs are grown by hydrothermal synthesis. The periodic Si micro pyramid-ZnO NWs hierarchical structure shows broadband antireflection with average reflectance as low as 2.5% in the 300-1000 nm wavelength range. A tenfold enhancement in Raman intensity is observed in this structure compared to planar Si sample. These hierarchical structures with enriched optical properties and high surface to volume ratio are promising for photovoltaic (PV) and sensor applications.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(040.6040) Detectors : Silicon
(120.5700) Instrumentation, measurement, and metrology : Reflection
(130.6010) Integrated optics : Sensors
(220.4000) Optical design and fabrication : Microstructure fabrication
(290.4210) Scattering : Multiple scattering
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:

Original Manuscript: May 29, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: June 26, 2013
Published: July 9, 2013

B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, "Silicon micro-structure and ZnO nanowire hierarchical assortments for light management," Opt. Mater. Express 3, 1039-1048 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Y. Zhu, H. B. Yang, K. Du, W. Y. Fu, L. X. Chang, X. F. Pang, Y. Zeng, and G. T. Zou, “Preparation of SiC and SiC/ZnO Nano composites and its properties,” Mater. Lett.61(21), 4242–4245 (2007). [CrossRef]
  2. J. Li and J. Z. Zhang, “Optical properties and applications of hybrid semiconductor nanomaterials,” Coord. Chem. Rev.253(23–24), 3015–3041 (2009). [CrossRef]
  3. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer micro lens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express1(2), 259–269 (2011). [CrossRef]
  4. L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater.5(11), 893–900 (2006). [CrossRef] [PubMed]
  5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005). [CrossRef] [PubMed]
  6. S. H. Baek, S. B. Kim, J. K. Shin, and J. H. Kim, “Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes,” Sol. Energy Mater. Sol. Cells96, 251–256 (2012). [CrossRef]
  7. R. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, and Z. L. Wang, “Single-crystalline branched zinc phosphide nanostructures: synthesis, properties, and optoelectronic devices,” Nano Lett.7(2), 269–275 (2007). [CrossRef] [PubMed]
  8. U. K. Gautam, X. Fang, Y. Bando, J. Zhan, and D. Golberg, “Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures,” ACS Nano2(5), 1015–1021 (2008). [CrossRef] [PubMed]
  9. Y. Liu, A. Das, S. Xu, Z. Lin, C. Xu, Z. L. Wang, A. Rohatgi, and C. P. Wong, “Hybridizing ZnO nanowires with micro pyramid silicon wafers as super hydrophobic high-efficiency solar cells,” Adv. Energy Mater.2(1), 47–51 (2012). [CrossRef]
  10. S. H. Lee, G. E. Jellison, C. E. Duty, and J. Xu, “Light confinement-induced antireflection of ZnO nanocones,” Appl. Phys. Lett.99(15), 153113 (2011). [CrossRef]
  11. K. Sun, Y. Jing, C. Li, X. Zhang, R. Aguinaldo, A. Kargar, K. Madsen, K. Banu, Y. Zhou, Y. Bando, Z. Liu, and D. Wang, “3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation,” Nanoscale4(5), 1515–1521 (2012). [CrossRef] [PubMed]
  12. Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, and X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study,” J. Appl. Phys.111(3), 033104 (2012). [CrossRef]
  13. J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater.22(38), 4249–4269 (2010). [CrossRef] [PubMed]
  14. R. Sanatinia, K. M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, “GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications,” Opt. Mater. Express2(11), 1671–1679 (2012). [CrossRef]
  15. B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys.108(5), 051101 (2010). [CrossRef]
  16. Y. Hung, S. Lee, B. J. Thibeault, and L. A. Coldren, “Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection,” IEEE J. Sel. Top. Quantum Electron.17(4), 869–877 (2011). [CrossRef]
  17. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sens. Actuators A Phys.80(2), 179–188 (2000). [CrossRef]
  18. X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013). [CrossRef]
  19. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011). [CrossRef] [PubMed]
  20. H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009). [CrossRef]
  21. K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron. J.37(6), 519–525 (2006). [CrossRef]
  22. M. A. Vergés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc., Faraday Trans.86(6), 959–963 (1990). [CrossRef]
  23. Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures,” Surf. Interface Anal.42(6–7), 978–982 (2010). [CrossRef]
  24. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  25. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  26. S. Chattopadhyay, Y. F. Huang, Y. J. Jend, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng.69(1–3), 1–35 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited