OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1059–1074

The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1059-1074 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



First-principle study of possible bismuth-related centers in SiO2 and GeO2 glass model hosts is performed and the results are compared with the experimental data. The following centers are modeled: trivalent and divalent Bi substitutional centers; BiO interstitial molecule; interstitial ion, Bi+, and atom, Bi0; Bi··· ≡Si–Si≡ and Bi··· ≡Ge–Ge≡ complexes formed by interstitial Bi atoms and glass intrinsic defects, ≡Si–Si≡ or ≡Ge–Ge≡ oxygen vacancies; interstitial dimers, Bi 2 0 and Bi 2 . Experimental data available on bismuth-related IR luminescence in SiO2:Bi and GeO2:Bi glasses, visible (red) luminescence in SiO2:Bi glass and luminescence excitation are analyzed. A comparison of calculated spectral properties of bismuth-related centers with the experimental data shows that the IR luminescence in SiO2:Bi and GeO2:Bi is most likely caused by Bi··· ≡Si–Si≡ and Bi··· ≡Ge–Ge≡ complexes, and divalent Bi substitutional center is responsible for the red luminescence in SiO2:Bi.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: May 20, 2013
Revised Manuscript: July 4, 2013
Manuscript Accepted: July 8, 2013
Published: July 15, 2013

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, "The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study," Opt. Mater. Express 3, 1059-1074 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  2. E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology31(4), 681–688 (2013). [CrossRef]
  3. H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4configurations and its application to the spectrum of Bi+in molten salt media,” Inorganic Chem.6(6), 1172–1178 (1967). [CrossRef]
  4. H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011). [CrossRef] [PubMed]
  5. H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011). [CrossRef]
  6. A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013). [CrossRef]
  7. H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012). [CrossRef]
  8. H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010) [CrossRef]
  9. H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012). [CrossRef] [PubMed]
  10. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012). [CrossRef] [PubMed]
  11. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011). [CrossRef]
  12. E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics40(4), 283–285 (2010). [CrossRef]
  13. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi+, Bi53+, and Bi4,” arXiv:1106.1519v2 [cond-mat.mtrl-sci] (2011).
  14. I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010). [CrossRef]
  15. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011). [CrossRef] [PubMed]
  16. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011). [CrossRef] [PubMed]
  17. D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012). [CrossRef]
  18. I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.
  19. A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013). [CrossRef]
  20. S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012). [CrossRef]
  21. A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013). [CrossRef]
  22. A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013). [CrossRef]
  23. X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011). [CrossRef]
  24. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012). [CrossRef]
  25. R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett.55(22), 2471–2474 (1985). [CrossRef] [PubMed]
  26. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009). [CrossRef]
  27. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B50(24), 17953–19979 (1994). [CrossRef]
  28. http://qe-forge.org/projects/pslibrary
  29. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996). [CrossRef] [PubMed]
  30. http://theory.cm.utexas.edu/vtsttools/bader
  31. O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B12(8), 3060–3083 (1975). [CrossRef]
  32. http://elk.sourceforge.net
  33. J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B45(23), 13244–13249 (1992). [CrossRef]
  34. D. M. Ceperley and B. I. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett.45(7), 566–569 (1990). [CrossRef]
  35. A. D. Becke and E. R. Johnson, “A simple effective potential for exchange,”J. Chem. Phys.124(22), 221101 (2006). [CrossRef] [PubMed]
  36. F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett.102(22), 226401 (2009). [CrossRef] [PubMed]
  37. D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011). [CrossRef]
  38. G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,”J. Chem. Phys.48(1), 217–222 (1968). [CrossRef]
  39. C. W. M. Timmermans and G. Blasse, “The luminescence of some oxidic bismuth and lead compounds,”J. Solid State Chem.52(3), 222–232 (1984). [CrossRef]
  40. H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992). [CrossRef]
  41. R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002). [CrossRef]
  42. C. E. Moore, “Atomic Energy Levels,” Vol. III. (US Department of Commerce, National Bureau of Standards, 1958).
  43. S. George and J.H. Munsee, “Hyperfine-structure measurements in bismuth using a Fourier-transform spectrometer,” J. Opt. Soc. Am. B2(8), 1258–1263 (1985). [CrossRef]
  44. G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001). [CrossRef]
  45. G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994). [CrossRef]
  46. G. Blasse, “Classical phosphors: a Pandora box,”J. Lumin.72–74,129–134 (1997). [CrossRef]
  47. A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5(M2+= Ba2+, Sr2+and Ca2+),”J. Lumin.78(4), 239–243 (1998). [CrossRef]
  48. L. Dolk, U. Litzén, and G. M. Wahlgren, “The laboratory analysis of Bi II and its application to the Bi-rich HgMn star HR 7775,” Astronomy & Astrophysics388(2), 692–703 (2002). [CrossRef]
  49. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron.41(12), 1080–1082 (2011). [CrossRef]
  50. V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009). [CrossRef]
  51. A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994). [CrossRef]
  52. K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand Reinhold Company, 1979).
  53. O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998). [CrossRef]
  54. L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983). [CrossRef]
  55. V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, and E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett.38(3) 362–364 (2013). [CrossRef] [PubMed]
  56. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals,” Opt. Express21(8), 9324–9332 (2013). [CrossRef] [PubMed]
  57. K. Balasubramanian and D.-W. Liao, “Spectroscopic constants and potential energy curves of Bi20and Bi2−,”J. Chem. Phys.95(5), 3064–3073 (1991). [CrossRef]
  58. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  59. A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002). [CrossRef]
  60. M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987). [CrossRef]
  61. Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).
  62. L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited