OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1075–1086

Mid-infrared supercontinuum generation in chalcogenides

Yi Yu, Xin Gai, Ting Wang, Pan Ma, Rongping Wang, Zhiyong Yang, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 8, pp. 1075-1086 (2013)
http://dx.doi.org/10.1364/OME.3.001075


View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review experiments on mid-infrared supercontinuum (SC) generation including our own work on chalcogenide waveguides. Simulations are used to define the conditions in which a chalcogenide waveguide would produce SC from ≈2.5 µm to beyond 10 µm in a single waveguide device. The simulations suggested that broadband SC could be generated by pumping a bulk chalcogenide with fs pulses in the anomalous dispersion regime and this was demonstrated experimentally by producing a flat SC from 2.5 µm to beyond 7.5 µm.

© 2013 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(130.2755) Integrated optics : Glass waveguides
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: June 3, 2013
Revised Manuscript: July 3, 2013
Manuscript Accepted: July 3, 2013
Published: July 16, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Citation
Yi Yu, Xin Gai, Ting Wang, Pan Ma, Rongping Wang, Zhiyong Yang, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies, "Mid-infrared supercontinuum generation in chalcogenides," Opt. Mater. Express 3, 1075-1086 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-8-1075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  2. H. Kano and H. O. Hamaguchi, “Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express13(4), 1322–1327 (2005). [CrossRef] [PubMed]
  3. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012). [CrossRef]
  4. J. H. Kim, M. K. Chen, C. E. Yang, J. Lee, S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Middle-IR supercontinuum generations and applications,” Proc. SPIE7056, 70560V, 70560V-9 (2008). [CrossRef]
  5. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum.78(12), 123108 (2007). [CrossRef] [PubMed]
  6. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR Microscopy utilizing intense supercontinuum light source,” Opt. Express20(5), 4887–4892 (2012). [CrossRef] [PubMed]
  7. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  8. W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S.V. Afshar, “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19(22), 21135–21144 (2011). [CrossRef] [PubMed]
  9. R. Buczynski, H. Bookey, R. Stepien, J. Pniewski, D. Pysz, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Toward Mid-IR supercontinuum generation in bismuth-lead-galate glass based photonic crystal fibers,” Proc. SPIE8434, 84340Z1–84340Z-7 (2012). [CrossRef]
  10. J. H. Kim, M.-K. Chen, C. E. Yang, J. Lee, S. S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express16(6), 4085–4093 (2008). [CrossRef] [PubMed]
  11. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett.36(19), 3912–3914 (2011). [CrossRef] [PubMed]
  12. A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Y. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012). [CrossRef]
  13. W. Q. Yang, B. Zhang, J. Hou, R. Xiao, Z. F. Jiang, and Z. J. Liu, “Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier,” Laser Phys. Lett.10(5), 055107 (2013). [CrossRef]
  14. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt.51(7), 834–840 (2012). [CrossRef] [PubMed]
  15. L. B. Shaw, B. Cole, J. S. Sanghera, I. D. Aggarwal, F. H. Kung, S. S. Bayya, R. Mossadegh, P. A. Thielen, J. R. Kircher, and R. L. Murrer., “Development of IR-emitting infrared fibers at the naval research laboratory,” SPIE4366, 90–95 (2001). [CrossRef]
  16. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008). [CrossRef] [PubMed]
  17. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  18. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010). [CrossRef]
  19. G. Qin, X. Yan, M. Liao, A. Mori, T. Suzuki, and Y. Ohishi, “Wideband supercontinuum generation in tapered tellurite microstructured fibers,” Laser Phys.21(6), 1115–1121 (2011). [CrossRef]
  20. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20(24), 27083–27093 (2012). [CrossRef] [PubMed]
  21. M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, and Y. Ohishi, “Ultrabroad supercontinuum generation through filamentation in tellurite glass,” Laser Phys. Lett.10(3), 036002 (2013). [CrossRef]
  22. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009). [CrossRef]
  23. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5µm in ZBLAN fiber with high average power generation beyond 3.8µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28(10), 2486–2498 (2011). [CrossRef]
  24. M. Eckerle, C. Kieleck, J. Świderski, S. D. Jackson, G. Mazé, and M. Eichhorn, “Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber,” Opt. Lett.37(4), 512–514 (2012). [CrossRef] [PubMed]
  25. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29(4), 635–645 (2012). [CrossRef]
  26. M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-Octave-Spanning Supercontinuum Generation in Fluoride Glass,” Appl. Phys. Express6(3), 032503 (2013). [CrossRef]
  27. C. L. Thomsen, F. D. Nielsen, J. Johansen, C. Pedersen, P. M. Moselund, U. Møller, S. T. Sørensen, C. Larsen, and O. Bang, “New horizons for supercontinuum light sources: from UV to mid-IR,” Proc. SPIE8637, 86370T, 86370T-6 (2013). [CrossRef]
  28. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012). [CrossRef] [PubMed]
  29. L. B. Shaw, R. R. Gattass, J. Sanghera, and I. Aggarwal, “All-Fiber Mid-IR Supercontinuum Source from 1.5 to 5µm,” Proc. SPIE7914, 79140P, 79140P-5 (2011). [CrossRef]
  30. X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012). [CrossRef] [PubMed]
  31. G. Cinique, Diamond Light Source, (2007). http://www.diamond.ac.uk/Home/Beamlines/B22/publications.html
  32. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  33. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat Commun.3, 807 (2012). [CrossRef] [PubMed]
  34. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics5, 141–148 (2011).
  35. M. J. Weber, Handbook of optical materials. (CRC Press, Boca Raton, 2003).
  36. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009). [CrossRef]
  37. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  38. V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express14(25), 12302–12309 (2006). [CrossRef] [PubMed]
  39. R. J. Weiblen, A. Docherty, J. Hu, and C. R. Menyuk, “Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers,” Opt. Express18(25), 26666–26674 (2010). [CrossRef] [PubMed]
  40. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express18(7), 6722–6739 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited