OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1101–1110

Rapid phase transition of a phase-change metamaterial perfect absorber

Tun Cao, Chenwei Wei, Robert E. Simpson, Lei Zhang, and Martin J. Cryan  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1101-1110 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase-change materials (PCMs) have great potential in applications for data storage, optical switching and tunable photonic devices. However, heating the whole of the phase change material at a high speed presents a key challenge. Here, for the first time, we model the incorporation of the phase-change material (Ge2Sb2Te5) within a metamaterial perfect absorber (MMPA) and show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 900K (melting point of Ge2Sb2Te5) in just a few nanoseconds with a low light intensity of 150 W/m2, owing to the enhanced light absorption through strong plasmonic resonances in the absorber. Our structure is composed of an array of thin gold (Au) squares separated from a continuous Au film by a Ge2Sb2Te5 layer. A Finite Element Method photothermal model is used to study the temporal variation of temperature in the Ge2Sb2Te5 layer. It is also shown that an absorber with a widely tunable spectrum can be obtained by switching between the amorphous and crystalline states of Ge2Sb2Te5. The study lowers the power requirements for photonic devices based on a thermal phase change and paves the way for the realization of ultrafast photothermally tunable photonic devices.

© 2013 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 11, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: July 9, 2013
Published: July 17, 2013

Tun Cao, Chenwei Wei, Robert E. Simpson, Lei Zhang, and Martin J. Cryan, "Rapid phase transition of a phase-change metamaterial perfect absorber," Opt. Mater. Express 3, 1101-1110 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012). [CrossRef] [PubMed]
  2. A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008). [CrossRef]
  3. J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012). [CrossRef] [PubMed]
  4. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010). [CrossRef] [PubMed]
  5. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011). [CrossRef] [PubMed]
  6. M. Wuttig and M. Salinga, “Phase-Change Materials: Fast transformers,” Nat. Mater.11(4), 270–271 (2012). [CrossRef] [PubMed]
  7. W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008). [CrossRef]
  8. G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009). [CrossRef]
  9. S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol.2(10), 626–630 (2007). [CrossRef] [PubMed]
  10. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011). [CrossRef] [PubMed]
  11. T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006). [CrossRef]
  12. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001). [CrossRef]
  13. K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express19(2), 1260–1270 (2011). [CrossRef] [PubMed]
  14. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005). [CrossRef] [PubMed]
  15. D. J. Shelton, K. R. Coffey, and G. D. Boreman, “Experimental demonstration of tunable phase in a thermochromic infrared-reflectarray metamaterial,” Opt. Express18(2), 1330–1335 (2010). [CrossRef] [PubMed]
  16. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  17. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012). [CrossRef] [PubMed]
  18. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  19. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011). [CrossRef]
  20. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  21. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009). [CrossRef] [PubMed]
  22. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods,” Nature459(7245), 410–413 (2009). [CrossRef] [PubMed]
  23. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012). [CrossRef] [PubMed]
  24. T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013). [CrossRef]
  25. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008). [CrossRef] [PubMed]
  26. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express19(16), 15221–15228 (2011). [CrossRef] [PubMed]
  27. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express20(16), 17503–17508 (2012). [CrossRef] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  29. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010). [CrossRef]
  30. M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007). [CrossRef]
  31. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999). [CrossRef]
  32. T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013). [CrossRef]
  33. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010). [CrossRef]
  34. L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013). [CrossRef] [PubMed]
  35. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009). [CrossRef] [PubMed]
  36. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited