OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1111–1118

Characteristics of the surface microstructures in thick InGaN layers on GaN

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1111-1118 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6080 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper focuses on a comparative study of optical, morphological, microstructural and microcompositional properties of typical InGaN samples which exhibit V-defects but also two additional surface defects features, referred to as inclusion#1 (Ic1) and inclusion#2 (Ic2). HR-XRD, AFM, SEM, STEM and EDX are used to characterize such defects. Furthermore, hyperspectral mapping, spot mode and depth-resolved CL measurements provided useful informations on the optical emission properties and microstructure. The main characteristic of Ic1 luminescence peak is a decrease in intensity and no obvious shift in the CL peak position when going from the outside to the middle of such defect. More interesting was Ic2 which is shown to be local 3D top surface In-rich InGaN domains embedded in an homogeneous InGaN matrix. In fact, this study pointed out that close to the interface GaN/InGaN, it exists a 30 nm thick fully strained InGaN layer with constant indium incorporation. As the growth proceeds spatial fluctuation of the In content is observed and local In-rich 3D domains are shown to emerge systematically around threading dislocations terminations.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: February 25, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 3, 2013
Published: July 17, 2013

Y. El Gmili, G. Orsal, K. Pantzas, A. Ahaitouf, T. Moudakir, S. Gautier, G. Patriarche, D. Troadec, J. P. Salvestrini, and A. Ougazzaden, "Characteristics of the surface microstructures in thick InGaN layers on GaN," Opt. Mater. Express 3, 1111-1118 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008). [CrossRef]
  2. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011). [CrossRef]
  3. J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011). [CrossRef]
  4. X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009). [CrossRef]
  5. J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5, 2600111 (2013). [CrossRef]
  6. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110 (2011). [CrossRef]
  7. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012). [CrossRef]
  8. G. B. Stringfellow, “Microstructures produced during the epitaxial growth of InGaN alloys,” J. Cryst. Growth312, 735–749 (2010). [CrossRef]
  9. P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003). [CrossRef]
  10. F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002). [CrossRef]
  11. J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011). [CrossRef]
  12. M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009). [CrossRef]
  13. D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003). [CrossRef]
  14. S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007). [CrossRef]
  15. D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007). [CrossRef] [PubMed]
  16. K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012). [CrossRef]
  17. K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012). [CrossRef] [PubMed]
  18. S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited