OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1119–1126

Broadband antireflective silicon carbide surface produced by cost-effective method

Aikaterini Argyraki, Yiyu Ou, and Haiyan Ou  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 8, pp. 1119-1126 (2013)
http://dx.doi.org/10.1364/OME.3.001119


View Full Text Article

Enhanced HTML    Acrobat PDF (2032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°).

© 2013 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Nanomaterials

History
Original Manuscript: June 10, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 5, 2013
Published: July 19, 2013

Citation
Aikaterini Argyraki, Yiyu Ou, and Haiyan Ou, "Broadband antireflective silicon carbide surface produced by cost-effective method," Opt. Mater. Express 3, 1119-1126 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-8-1119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. Wilson and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982). [CrossRef]
  2. J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater.1(1), 59–63 (2002). [CrossRef] [PubMed]
  3. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  4. C. Aydin, A. Zaslavsky, G. J. Sonek, and J. Goldstein, “Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures,” Appl. Phys. Lett.80, 2242–2244 (2002) . [CrossRef]
  5. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater.20(4), 801–804 (2008). [CrossRef]
  6. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91(22), 221107 (2007). [CrossRef]
  7. R. Kawai, T. Kondo, A. Suzuki, F. Teramae, T. Kitano, K. Tamura, H. Sakurai, M. Iwaya, H. Amano, S. Kamiyama, I. Akasaki, M. Chen, A. Li, and K. Su, “Realization of extreme light extraction efficiency for moth-eye LEDs on SiC substrate using high-reflection electrode,” Phys. Status Solidi C7(7-8), 2180–2182 (2010). [CrossRef]
  8. Y. Ou, V. Jokubavicius, P. Hens, M. Kaiser, P. Wellmann, R. Yakimova, M. Syväjärvi, and H. Ou, “Broadband and omnidirectional light harvesting enhancement of fluorescent SiC,” Opt. Express20(7), 7575–7579 (2012). [CrossRef] [PubMed]
  9. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, J. S. Yu, and Y. T. Lee, “Antireflective property of thin film a-Si solar cell structures with graded refractive index structure,” Opt. Express19(S2Suppl 2), A108–A117 (2011). [CrossRef] [PubMed]
  10. Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater.18(20), 2699–2702 (2006). [CrossRef]
  11. X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater.20(2), 259–265 (2010). [CrossRef]
  12. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008). [CrossRef]
  13. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  14. T. J. Prosa, P. H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Atom probe analysis of interfacial abruptness and clustering within a single InxGa1−xN quantum well device on semipolar (1011¯) GaN substrate,” Appl. Phys. Lett.98(19), 191903 (2011). [CrossRef]
  15. C. Wetzel and T. Detchprohm, “Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency,” Opt. Express19(S4Suppl 4), A962–A971 (2011). [CrossRef] [PubMed]
  16. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  17. T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N. M. Johnson, M. Weyers, and M. Kneissl, “Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett.97(17), 171105 (2010). [CrossRef]
  18. J. Irikawa, S. Miyajima, T. Watahiki, and M. Konagai, “High efficiency hydrogenated nanocrystalline cubic silicon carbide/crystalline silicon heterojunction solar cells using an optimized buffer layer,” Appl. Phys. Express4(9), 092301 (2011). [CrossRef]
  19. M. S. Kang, S. J. Joo, W. Bahng, J. H. Lee, N. K. Kim, and S. M. Koo, “Anti-reflective nano- and micro-structures on 4H-SiC for photodiodes,” Nanoscale Res. Lett.6(1), 236 (2011). [CrossRef] [PubMed]
  20. S. Kamiyama, T. Maeda, Y. Nakamura, M. Iwaya, H. Amano, I. Akasaki, H. Kinoshita, T. Furusho, M. Yoshimoto, T. Kimoto, J. Suda, A. Henry, I. G. Ivanov, J. P. Bergman, B. Monemar, T. Onuma, and S. F. Chichibu, “Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-B-doped 6H-SiC,” J. Appl. Phys.99(9), 093108 (2006). [CrossRef]
  21. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater.23(48), 5796–5800 (2011). [CrossRef] [PubMed]
  22. T. Seko, S. Mabuchi, F. Teramae, A. Suzuki, Y. Kaneko, R. Kawai, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, “Fabrication technique for moth-eye structure using low-energy electron-beam projection lithography for high-performance blue-lightemitting diode on SiC substrate,” Proc. SPIE7216, 721628, 721628-9 (2009). [CrossRef]
  23. C. I. Yeo, J. H. Kwon, S. J. Jang, and Y. T. Lee, “Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask,” Opt. Express20(17), 19554–19562 (2012). [CrossRef] [PubMed]
  24. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008). [CrossRef]
  25. R. Brunner, B. Keil, C. Morhard, D. Lehr, J. Draheim, U. Wallrabe, and J. Spatz, “Antireflective “moth-eye” structures on tunable optical silicone membranes,” Appl. Opt.51(19), 4370–4376 (2012). [CrossRef] [PubMed]
  26. J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519(11), 3792–3797 (2011). [CrossRef]
  27. J. W. Leem and J. S. Yu, “Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics,” Opt. Express20(24), 26160–26166 (2012). [CrossRef] [PubMed]
  28. Y. Ou, I. Aijaz, V. Jokubavicius, R. Yakimova, M. Syväjärvi, and H. Ou, “Broadband antireflection silicon carbide surface by self-assembled nanopatterned reactive-ion etching,” Opt. Mater. Express3(1), 86–94 (2013). [CrossRef]
  29. X. H. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO microsphere arrays,” J. Display Technol.9(5), 324–332 (2013). [CrossRef]
  30. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22(16), 3454–3459 (2012). [CrossRef]
  31. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011). [CrossRef] [PubMed]
  32. A. El Amrani, R. Tadjine, and F. Y. Moussa, “Microstructures formation by fluorocarbon barrel plasma etching,” Int. J. Plasma Sci. Eng.2008, 371812 (2008).
  33. Y. Ou, D. D. Corell, C. Dam-Hansen, P. M. Petersen, and H. Ou, “Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode,” Opt. Express19(S2Suppl 2), A166–A172 (2011). [CrossRef] [PubMed]
  34. F. A. Khan and I. Adesida, “High rate etching of SiC using inductively coupled plasma reactive ion etching in SF6-based gas mixtures,” Appl. Phys. Lett.75(15), 2268–2270 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited