OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1127–1136

Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications

Ruosong Wang, Xiangwei Meng, Feixiang Yin, Yan Feng, Guanshi Qin, and Weiping Qin  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1127-1136 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Heavily erbium-doped low-hydroxyl fluorotellurite glasses with molar compositions of (85.7−x)TeO2 + xBaF2 + 4.8Na2CO3 + 9.5Er2O3 (x = 38.1, 28.6, 19) were fabricated. The maximum doping concentration of erbium ions was up to 19 mol % by introducing BaF2 into the tellurite glass system. Under 980 nm excitation, intense emissions around 2.7 μm from the 4I11/24I13/2 transition of Er3+ ions were observed in these glasses. The efficient mid-infrared emission can be attributed to the existence of cross relaxation (CR) 4I13/24I15/2 (Er3+): 4I13/24I9/2 (Er3+) caused by high erbium concentration, low hydroxyl content, and low phonon energy. The stimulated emission cross section at 2.7 μm of 47.6TeO2 + 38.1BaF2 + 4.8Na2CO3 + 9.5Er2O3 glass was calculated as 1.94 × 10−20 cm2. Our results indicate that it is a promising gain medium for 2.7 μm lasers.

© 2013 OSA

OCIS Codes
(160.2290) Materials : Fiber materials
(160.2750) Materials : Glass and other amorphous materials
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Laser Materials

Original Manuscript: April 23, 2013
Revised Manuscript: June 25, 2013
Manuscript Accepted: July 9, 2013
Published: July 23, 2013

Ruosong Wang, Xiangwei Meng, Feixiang Yin, Yan Feng, Guanshi Qin, and Weiping Qin, "Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications," Opt. Mater. Express 3, 1127-1136 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012). [CrossRef]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012). [CrossRef]
  3. G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012). [CrossRef]
  4. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).
  5. D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999). [CrossRef]
  6. Y. Guo, Y. Tian, L. Zhang, L. Hu, N. K. Chen, and J. Zhang, “Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength,” Opt. Lett.37(16), 3387–3389 (2012). [CrossRef] [PubMed]
  7. M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995). [CrossRef]
  8. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37(13), 2568–2570 (2012). [CrossRef] [PubMed]
  9. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009). [CrossRef] [PubMed]
  10. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er: ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett.35(23), 3943–3945 (2010). [CrossRef] [PubMed]
  11. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er: ZBLAN fiber laser at 2.8 μm,” Opt. Lett.36(15), 2812–2814 (2011). [CrossRef] [PubMed]
  12. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett.36(7), 1104–1106 (2011). [CrossRef] [PubMed]
  13. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett.36(7), 1173–1175 (2011). [CrossRef] [PubMed]
  14. Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys.110(1), 013512 (2011). [CrossRef]
  15. Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett.37(2), 268–270 (2012). [CrossRef] [PubMed]
  16. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys.111(3), 033524 (2012). [CrossRef]
  17. H. Zhan, Z. Zhou, J. He, and A. Lin, “Intense 2.7 µm emission of Er3+-doped water-free fluorotellurite glasses,” Opt. Lett.37(16), 3408–3410 (2012). [CrossRef] [PubMed]
  18. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett.36(5), 740–742 (2011). [CrossRef] [PubMed]
  19. J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011). [CrossRef]
  20. S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Phys. Rev. B56(13), 8021–8025 (1997). [CrossRef]
  21. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001). [CrossRef]
  22. D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev.134(2A), A299–A306 (1964). [CrossRef]
  23. M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” IEEE J. Quantum Electron.38(12), 1629–1637 (2002). [CrossRef]
  24. G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited