OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1187–1196

Numerical study of the meta-nanopyramid array as efficient solar energy absorber

Qiuqun Liang, Weixing Yu, Wencai Zhao, Taisheng Wang, Jingli Zhao, Hongsheng Zhang, and Shaohua Tao  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1187-1196 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conventional dielectric moth eye structure is well known to be antireflective, but cannot work well in the whole solar spectrum. In addition, it cannot be used as a light absorber. However, in some cases, light absorbing and harvesting are important for energy conversion from light to heat or electricity. Here, we propose a metamaterial-based nanopyramid array which shows near 100% absorbing property in the entire solar spectrum (i.e. 0.2-2.5 μm). In addition, the high absorption performance of meta-nanopyramid array retains very well at a wide receiving angle with polarization-independent. Thus, it can dramatically improve the efficiency of the solar light absorbing. The efficient light absorbing property can be explained in terms of the synergetic effects of slow light mode, surface plasmon polariton resonance and magnetic polariton resonance.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: May 24, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 11, 2013
Published: July 29, 2013

Qiuqun Liang, Weixing Yu, Wencai Zhao, Taisheng Wang, Jingli Zhao, Hongsheng Zhang, and Shaohua Tao, "Numerical study of the meta-nanopyramid array as efficient solar energy absorber," Opt. Mater. Express 3, 1187-1196 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief microstructures,” Proc. SPIE6545, 65450Y, 65450Y-14 (2007). [CrossRef]
  2. S. Wilson and M. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” J. Mod. Opt.29(1), 993–1009 (1982).
  3. D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).
  4. S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun.31(6), 539–544 (2010). [CrossRef] [PubMed]
  5. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012). [CrossRef]
  6. R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012). [CrossRef] [PubMed]
  7. J. S. Y. Young Min Song and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 226–228 (2010). [PubMed]
  8. P. Clapham and M. Hutley, “Reduction of lens reflection by the “moth eye” principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  9. S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010). [CrossRef]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  13. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  14. X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).
  15. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express20(9), 10376–10381 (2012). [CrossRef] [PubMed]
  16. D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012). [CrossRef]
  17. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010). [CrossRef]
  18. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009). [CrossRef] [PubMed]
  19. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013). [CrossRef]
  20. K. Liou, An introduction to atmospheric radiation, 84 (Academic press, 2002).
  21. FDTD, lumerical, http://www.lumerical.com/ , 10, 2010.
  22. E. Palik, Handbook of optical constants of solids, 3 (Academic press, 1998).
  23. J. Dobrowolski, “Optical properties of films and coatings,” Handbook of Optics 1, 42–1 (1995).
  24. T. C. Choy, Effective Medium Theory: Principles and Applications, 102 (Oxford University Press on Demand, 1999).
  25. D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982). [CrossRef]
  26. T. Tang, F. Chen, and B. Sun, “Photonic band gap from periodic structures containing anisotropic nonmagnetic left-handed metamaterial,” Chin. Opt. Lett.8(4), 431–434 (2010).
  27. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]
  28. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103–110 (2011).
  29. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004). [CrossRef] [PubMed]
  30. J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Co16(2), 96–98 (2006). [CrossRef]
  31. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  32. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008). [CrossRef]
  33. H. Raether, Surface plasmons (Springer-Verlag Berlin, 1988).
  34. Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol.48, 415–421 (2013). [CrossRef]
  35. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15(6), 3333–3341 (2007). [CrossRef] [PubMed]
  36. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited