OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 8 — Aug. 1, 2013
  • pp: 1197–1204

Degenerately doped InGaBiAs:Si as a highly conductive and transparent contact material in the infrared range

Y. Zhong, P. B. Dongmo, L. Gong, S. Law, B. Chase, D. Wasserman, and J. M. O. Zide  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 8, pp. 1197-1204 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate molecular beam epitaxy (MBE) grown degenerately doped InGaBiAs:Si as a new transparent contact material usable from the near-infrared (near-IR) to the mid-infrared (mid-IR). This material system can exhibit high transparency over large portions of the 1.3-12.5 μm wavelength range, with the exact transparency windows determined by the material carrier concentration. As a comparison, the transmittance of the more conventional IR contact material, Indium Tin Oxide (ITO), drops rapidly for wavelengths longer than 1.5 μm. The conductivity of InGaBiAs:Si is also much higher than ITO due to its high doping concentration and good mobility. Our transmission spectra are modeled using a transfer matrix formalism, and the resulting modeled IR transmission spectra closely match our experimental results with proper choice of two fitting parameters, the material plasma frequency and the scattering rate.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: June 17, 2013
Revised Manuscript: July 28, 2013
Manuscript Accepted: July 28, 2013
Published: July 30, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Y. Zhong, P. B. Dongmo, L. Gong, S. Law, B. Chase, D. Wasserman, and J. M. O. Zide, "Degenerately doped InGaBiAs:Si as a highly conductive and transparent contact material in the infrared range," Opt. Mater. Express 3, 1197-1204 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic in the optical range,” Opt. Mater. Express1, 1090–1099 (2011). [CrossRef]
  2. J. L. Humphrey and D. Kuciauskas, “Optical susceptibilities of supported indium tin oxide thin films,” J. Appl. Phys.100(11), 113123 (2006). [CrossRef]
  3. D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett.34(3), 325–327 (2009). [CrossRef] [PubMed]
  4. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004). [CrossRef] [PubMed]
  5. L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett.94(8), 081103 (2009). [CrossRef]
  6. W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011). [CrossRef] [PubMed]
  7. D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett.96(4), 041109 (2010). [CrossRef]
  8. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  9. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006). [CrossRef] [PubMed]
  10. C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energy Mater. Sol. Cells91(17), 1529–1598 (2007). [CrossRef]
  11. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011). [CrossRef] [PubMed]
  12. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express20(11), 12155–12165 (2012). [CrossRef] [PubMed]
  13. J. P. Petropoulos, Y. Zhong, and J. M. O. Zide, “Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material,” Appl. Phys. Lett.99(3), 031110 (2011). [CrossRef]
  14. Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012). [CrossRef]
  15. P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012). [CrossRef]
  16. T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986). [CrossRef]
  17. H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000). [CrossRef]
  18. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev.93(3), 632–633 (1954). [CrossRef]
  19. T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc.67, 775 (1954).
  20. K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films516(17), 5829–5835 (2008). [CrossRef]
  21. A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004). [CrossRef]
  22. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys.47(9), 4086 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited