OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1250–1258

Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser

Patrick A. Berry, John R. Macdonald, Stephen J. Beecher, Sean A. McDaniel, Kenneth L. Schepler, and Ajoy K. Kar  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 9, pp. 1250-1258 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and operation of a Cr:ZnSe buried channel waveguide laser operating at 2500 nm with a linewidth of 10 nm and a maximum power output of 1.7 W. Ultrafast laser inscription is used to fabricate the depressed cladding waveguide in a polycrystalline Cr:ZnSe sample. A thermal model is developed and predicts performance degradation at higher pump levels due to thermal quenching of the lifetime. This prediction is supported by the experimental results.

© 2013 OSA

OCIS Codes
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.6990) Materials : Transition-metal-doped materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Laser Materials

Original Manuscript: June 17, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 2, 2013
Published: August 8, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Patrick A. Berry, John R. Macdonald, Stephen J. Beecher, Sean A. McDaniel, Kenneth L. Schepler, and Ajoy K. Kar, "Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser," Opt. Mater. Express 3, 1250-1258 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996). [CrossRef]
  2. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997). [CrossRef]
  3. I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004). [CrossRef]
  4. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr(2+):ZnSemaster oscillator power amplifier systems,” Opt. Express18(14), 15062–15072 (2010). [CrossRef] [PubMed]
  5. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” SPIE Proceedings 5460 (2004). [CrossRef]
  6. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).
  7. G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid-State Photonics, WB12 (2004).
  8. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012). [CrossRef]
  9. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005). [CrossRef]
  10. J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011). [CrossRef] [PubMed]
  11. J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express18(25), 25999–26006 (2010). [CrossRef] [PubMed]
  12. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011). [CrossRef] [PubMed]
  13. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett.35(23), 4036–4038 (2010). [CrossRef] [PubMed]
  14. J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett.102(16), 161110 (2013). [CrossRef]
  15. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett.38(13), 2194–2196 (2013). [CrossRef] [PubMed]
  16. W. J. Tropf, “Temperature-dependent refractive index models of BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng.34(5), 1369–1373 (1995). [CrossRef]
  17. H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13(1), 103–150 (1984). [CrossRef]
  18. G. A. Slack, “Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities,” Phys. Rev.6(10), 3791–3800 (1972). [CrossRef]
  19. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt.15(2), 305–307 (1976). [CrossRef] [PubMed]
  20. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited