OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1279–1284

Second harmonic generation of violet light in femtosecond-laser-inscribed BiB3O6 cladding waveguides

Yuechen Jia, J. R. Vázquez de Aldana, Qingming Lu, D. Jaque, and Feng Chen  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 9, pp. 1279-1284 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Depressed cladding waveguide structures have been fabricated in BiB3O6 nonlinear crystal by using femtosecond (fs) laser inscription. The nonlinear properties of original BiB3O6 crystal have been well preserved within the waveguide volume. Under 800 nm continuous wave laser pumping, the guided-wave second harmonic generation of violet light at 400 nm has been realized, with a maximum power of ~1.05 mW and a conversion efficiency of ~0.98%/W.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optical Materials

Original Manuscript: July 9, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 4, 2013
Published: August 9, 2013

Yuechen Jia, J. R. Vázquez de Aldana, Qingming Lu, D. Jaque, and Feng Chen, "Second harmonic generation of violet light in femtosecond-laser-inscribed BiB3O6 cladding waveguides," Opt. Mater. Express 3, 1279-1284 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).
  2. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  3. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012). [CrossRef]
  4. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  5. M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6.,” Opt. Express12(24), 6002–6019 (2004). [CrossRef] [PubMed]
  6. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010). [CrossRef]
  7. F. Chen, H. Hu, K. M. Wang, B. Teng, J. Y. Wang, Q. M. Lu, and D. Y. Shen, “Formation of a planar optical waveguide by mega-electron-volt He+ and P+ ions implanted in a BiB3O6 crystal,” Opt. Lett.26(24), 1993–1995 (2001). [CrossRef] [PubMed]
  8. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008). [CrossRef]
  9. S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011). [CrossRef] [PubMed]
  10. Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012). [CrossRef]
  11. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  12. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).
  13. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. DOI: (2013). [CrossRef]
  14. K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip12(19), 3576–3589 (2012). [CrossRef] [PubMed]
  15. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  16. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009). [CrossRef]
  17. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009). [CrossRef]
  18. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012). [CrossRef] [PubMed]
  19. J. T. Lin, S. J. Yu, Y. G. Ma, W. Fang, F. He, L. L. Qiao, L. M. Tong, Y. Cheng, and Z. Z. Xu, “On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing,” Opt. Express20(9), 10212–10217 (2012). [CrossRef] [PubMed]
  20. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express21(4), 4493–4502 (2013). [CrossRef] [PubMed]
  21. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007). [CrossRef]
  22. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011). [CrossRef] [PubMed]
  23. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012). [CrossRef] [PubMed]
  24. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  25. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  26. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” Proc. SPIE4941, 51–57 (2003). [CrossRef]
  27. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012). [CrossRef] [PubMed]
  28. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  29. N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: rrl6(7), 306–308 (2012). [CrossRef]
  30. M. Thorhauge, J. L. Mortensen, P. Tidemand-Lichtenberg, and P. Buchhave, “Tunable intra-cavity SHG of CW Ti:Sapphire lasers around 785 nm and 810 nm in BiBO-crystals,” Opt. Express14(6), 2283–2288 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited