OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1313–1331

Flexible integrated photonics: where materials, mechanics and optics meet [Invited]

Juejun Hu, Lan Li, Hongtao Lin, Ping Zhang, Weidong Zhou, and Zhenqiang Ma  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1313-1331 (2013)
http://dx.doi.org/10.1364/OME.3.001313


View Full Text Article

Enhanced HTML    Acrobat PDF (3181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While the vast majority of integrated photonic devices are traditionally fabricated on rigid substrates, photonic integration of both passive and active photonic devices on flexible polymer substrates has been demonstrated in recent years, and its applications in imaging, sensing and optical interconnects are being actively pursued. This paper presents an overview of the emerging field of mechanically flexible photonics, where we examine material processing and mechanical design rationales dictated by application-specific optical functionalities. The examples include semiconductor nanomembranes which serve as the key enabling material for hybrid inorganic-organic flexible active photonics, and monolithically integrated passive photonic structures fabricated from semiconductors, polymers, or amorphous materials. Technical challenges and further research opportunities related to materials engineering and device integration on flexible substrates are also discussed.

© 2013 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(160.2750) Materials : Glass and other amorphous materials
(160.3130) Materials : Integrated optics materials
(160.6000) Materials : Semiconductor materials
(350.3850) Other areas of optics : Materials processing

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: May 31, 2013
Revised Manuscript: July 31, 2013
Manuscript Accepted: August 2, 2013
Published: August 12, 2013

Citation
Juejun Hu, Lan Li, Hongtao Lin, Ping Zhang, Weidong Zhou, and Zhenqiang Ma, "Flexible integrated photonics: where materials, mechanics and optics meet [Invited]," Opt. Mater. Express 3, 1313-1331 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D42(23), 234007 (2009). [CrossRef]
  2. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008). [CrossRef] [PubMed]
  3. L. Zhou, A. Wanga, S. Wu, J. Sun, S. Park, and T. Jackson, “All-organic active matrix flexible display,” Appl. Phys. Lett.88(8), 083502 (2006). [CrossRef]
  4. E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly Reliable Flexible Active Optical Links,” IEEE Photon. Technol. Lett.22(5), 287–289 (2010). [CrossRef]
  5. D. Guidotti, Y. Jianjun, M. Blaser, V. Grundlehner, and G. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in Proceedings of 56th Electronic Components and Technology Conference (IEEE, 2006), pp. 782–788. [CrossRef]
  6. T. Shibata and A. Takahashi, “Flexible opto-electronic circuit board for in-device interconnection,” in Proc. 58th Electron. Compon. Technol. Conf. (IEEE, 2008), pp. 261–267. [CrossRef]
  7. B. Swatowski, C. Amb, S. Breed, D. Deshazer, W. Ken Weidner, R. Dangel, N. Meier, and B. Offrein, “Flexible, stable, and easily processable optical silicones for low loss polymer waveguides,” Proc. SPIE8622, 8622–8624 (2013). [CrossRef]
  8. K. Cherenack, K. V. Os, and L. V. Pieterson, “Smart photonic textiles begin to weave their magic,” Laser Focus World48, 63–66 (2012).
  9. Z. Yu, X. Niu, Z. Liu, and Q. Pei, “Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes,” Adv. Mater.23(34), 3989–3994 (2011). [CrossRef] [PubMed]
  10. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun2, 343 (2011). [CrossRef] [PubMed]
  11. J. Yoon, A. J. Baca, S. I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nat. Mater.7(11), 907–915 (2008). [CrossRef] [PubMed]
  12. W. Park and J. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett.85(21), 4845–4847 (2004). [CrossRef]
  13. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci Rep2, 622 (2012). [CrossRef] [PubMed]
  14. C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett.13(1), 248–252 (2013). [CrossRef] [PubMed]
  15. D. Taillaert, W. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-oninsulator microresonators,” Proc. SPIE6619, 661914, 661914-4 (2007). [CrossRef]
  16. L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express20(18), 20564–20575 (2012). [CrossRef] [PubMed]
  17. J. C. Martinez-Anton, H. Canabal, J. A. Quiroga, E. Bernabeu, M. A. Labajo, and V. C. Testillano, “Enhancement of surface inspection by Moiré interferometry using flexible reference gratings,” Opt. Express8(12), 649–654 (2001). [CrossRef] [PubMed]
  18. L. Ge, X. Wang, H. Chen, K. Qiu, and S. Fu, “Flexible subwavelength gratings fabricated by reversal soft UV nanoimprint,” Chin. Opt. Lett.10(9), 090502–090505 (2012). [CrossRef]
  19. D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, “Epidermal electronics,” Science333(6044), 838–843 (2011). [CrossRef] [PubMed]
  20. Z. Ma, “Materials science:An electronic second skin,” Science333(6044), 830–831 (2011). [CrossRef] [PubMed]
  21. S. Ahn and L. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater.20(11), 2044–2049 (2008). [CrossRef]
  22. J. Ok, H. Youn, M. Kwak, K. Lee, Y. Shin, L. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett.101(22), 223102 (2012). [CrossRef]
  23. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol.22(9), 2168–2176 (2004). [CrossRef]
  24. Y. Huang, G. Paloczi, A. Yariv, C. Zhang, and L. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B108(25), 8606–8613 (2004). [CrossRef]
  25. G. Paloczi, Y. Huang, and A. Yariv, “Free-standing all-polymer microring resonator optical filter,” Electron. Lett.39(23), 1650–1651 (2003). [CrossRef]
  26. K. J. Kim, J. K. Seo, and M. C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express16(3), 1423–1430 (2008). [CrossRef] [PubMed]
  27. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010). [CrossRef]
  28. K. J. Kim, J. W. Kim, M. C. Oh, Y. O. Noh, and H. J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express18(8), 8392–8399 (2010). [CrossRef] [PubMed]
  29. T. Lu, L. Chiu, P. Lin, and P. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett.99(7), 071101 (2011). [CrossRef]
  30. S. Furumi, H. Fudouzi, H. Miyazaki, and Y. Sakka, “Flexible polymer colloidal -crystal lasers with a light-emitting planar defect,” Adv. Mater.19(16), 2067–2072 (2007). [CrossRef]
  31. H. Song, M. Oh, S. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett.82(25), 4432–4434 (2003). [CrossRef]
  32. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A.102(30), 10451–10453 (2005). [CrossRef] [PubMed]
  33. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature477(7362), 45–53 (2011). [CrossRef] [PubMed]
  34. H. Lin, L. Li, Y. Zou, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration,” Proc. SPIE8600, 8600–8620 (2013). [CrossRef]
  35. C. Hsueh, “Modeling of elastic deformation of multilayers due to residual stresses and external bending,” J. Appl. Phys.91(12), 9652–9656 (2002). [CrossRef]
  36. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science320(5875), 507–511 (2008). [CrossRef] [PubMed]
  37. Y. Maeda and Y. Hashiguchi, “Flexible film waveguides with excellent bending properties,” Proc. SPIE6899, 68990D, 68990D-8 (2008). [CrossRef]
  38. W. Yang, H. Yang, G. Qin, Z. Ma, J. Berggren, M. Hammar, R. Soref, and W. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett.96(12), 121107 (2010). [CrossRef]
  39. W. Zhou, M. Zhenqiang, C. Santhad, Y. Shuai, J. Seo, D. Zhao, H. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron.44(12-13), 605–611 (2012). [CrossRef]
  40. L. Li, H. Lin, Y. Zou, and J. Hu, Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, and S. Qiao, N. Lu, S. Danto, J. D. Musgraves, and K. Richardson are preparing a manuscript to be called “3-D integrated flexible glass photonics.”
  41. D. H. Kim, N. Lu, R. Ghaffari, Y. S. Kim, S. P. Lee, L. Xu, J. Wu, R. H. Kim, J. Song, Z. Liu, J. Viventi, B. de Graff, B. Elolampi, M. Mansour, M. J. Slepian, S. Hwang, J. D. Moss, S. M. Won, Y. Huang, B. Litt, and J. A. Rogers, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater.10(4), 316–323 (2011). [CrossRef] [PubMed]
  42. R. Verplancke, F. Bossuyt, D. Cuypers, and J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng.22(1), 015002 (2012). [CrossRef]
  43. D. Kim and J. A. Rogers, “Stretchable electronics: Materials strategies and devices,” Adv. Mater.20(24), 4887–4892 (2008). [CrossRef]
  44. S. Mack, M. A. Meitl, A. J. Baca, Z. T. Zhu, and J. A. Rogers, “Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers,” Appl. Phys. Lett.88(21), 213101 (2006). [CrossRef]
  45. X. Xu, H. Subbaraman, A. Hosseini, C. Y. Lin, D. Kwong, and R. T. Chen, “Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration,” Opt. Lett.37(6), 1020–1022 (2012). [CrossRef] [PubMed]
  46. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater.5(1), 33–38 (2006). [CrossRef]
  47. M. J. Zablocki, A. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane transfer process for intricate photonic device applications,” Opt. Lett.36(1), 58–60 (2011). [CrossRef] [PubMed]
  48. A. Ghaffari, A. Hosseini, X. Xu, D. Kwong, H. Subbaraman, and R. T. Chen, “Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates,” Opt. Express18(19), 20086–20095 (2010). [CrossRef] [PubMed]
  49. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6(7), 402–407 (2011). [CrossRef] [PubMed]
  50. D. Hines, V. Ballarotto, E. Williams, Y. Shao, and S. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys.101(2), 024503 (2007). [CrossRef]
  51. H. C. Yuan, M. M. Roberts, P. Zhang, B. N. Park, L. J. Klein, D. E. Savage, F. S. Flack, Z. Ma, P. G. Evans, M. A. Eriksson, G. K. Celler, and M. G. Lagally, “Silicon-based nanomembrane materials: the ultimate in strain engineering,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, CA, 2006, pp. 327–333.
  52. H. C. Yuan and Z. Ma, “Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate,” Appl. Phys. Lett.89(21), 212105 (2006). [CrossRef]
  53. H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys.100(1), 013708 (2006). [CrossRef]
  54. H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys.102(3), 034501 (2007). [CrossRef]
  55. K. Zhang, J. Seo, W. Zhou, and Z. Ma, “Fast flexible electronics using transferrable silicon nanomembranes (Topical Review),” J. Phys. D.45(14), 143001 (2012). [CrossRef]
  56. Z. Ma and L. Sun, “Will future RFIC be flexible?(Invited),” in IEEE 10th Annual Wireless and Microwave Technology Conference,2009. WAMICON '09., Clearwater, FL, 2009, pp. 1–5. [CrossRef]
  57. L. Sun, G. Qin, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz thin-film transistors with transferrable silicon nanomembranes for high-performance massive flexible electronics,” Small6, 2553–2557 (2010). [CrossRef] [PubMed]
  58. H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-normal fano filters based on transferred silicon nanomembranes on glass substrates,” Electron. Lett.44(14), 858–859 (2008). [CrossRef]
  59. L. Chen, Z. Qiang, H. Yang, H. Pang, Z. Ma, and W. D. Zhou, “Polarization and angular dependent transmissions on transferred nanomembrane Fano filters,” Opt. Express17(10), 8396–8406 (2009). [CrossRef] [PubMed]
  60. Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett.93(6), 061106 (2008). [CrossRef]
  61. W. Yang, S. Chuwongin, D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Flexible solar cells based on stacked semiconductor nanomembranes on plastic substrates,” in CLEO San Jose, CA, 2010.
  62. S. Chuwongin, W. Yang, H. Yang, W. D. Zhou, and Z. Ma, “Flexible Crystalline InP Nanomembrane LED Arrays,” in IEEE Photonics Society Annual Meeting Denver, CO, 2010. [CrossRef]
  63. H. Zhou, J.-H. Seo, D. M. Paskiewicz, Y. Zhu, G. K. Celler, P. M. Voyles, W. Zhou, M. G. Lagally, and Z. Ma, “Fast flexible electronics with strained silicon nanomembranes,” Sci Rep3, 1291 (2013). [CrossRef] [PubMed]
  64. Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, K. Dobson, R. Birkmire, and J. Hu, Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, and S. Danto, J. D. Musgraves, and K. Richardson are preparing a manuscript to be called “High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Nonplanar Substrates.”
  65. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater.23(38), 4422–4430 (2011). [CrossRef] [PubMed]
  66. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express13(23), 9460–9464 (2005). [CrossRef] [PubMed]
  67. J. E. Bowers, H. Park, A. W. Fang, O. Cohen, R. Jones, and M. Paniccia, “Design and fabrication of optically pumped hybrid silicon-AlGaInAs evanescent lasers,” IEEE J. Sel. Top. Quantum Electron.12(6), 1657–1663 (2006). [CrossRef]
  68. O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001). [CrossRef] [PubMed]
  69. S. A. Scott and M. G. Lagally, “Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys,” J. Phys. D Appl. Phys.40(4), R75–R92 (2007). [CrossRef]
  70. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A.98(9), 4835–4840 (2001). [CrossRef] [PubMed]
  71. H. Ma, A. K.-Y. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater.14(19), 1339–1365 (2002). [CrossRef]
  72. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981). [CrossRef]
  73. B. Rangarajan, A. Y. Kovalgin, K. Wörhoff, and J. Schmitz, “Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics,” Opt. Lett.38(6), 941–943 (2013). [CrossRef] [PubMed]
  74. J. T. Choy, J. D. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2012). [CrossRef] [PubMed]
  75. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: Leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010). [CrossRef] [PubMed]
  76. J. Sandland, “Sputtered silicon oxynitride for microphotonics: a materials study,” Ph.D. thesis, Massachusetts Institute of Technology (2005).
  77. J. Kim, C. Florea, K. A. Winick, and M. McCoy, “Design and fabrication of low-loss hydrogenated amorphous silicon overlay DBR for glass waveguide devices,” IEEE J. Sel. Top. Quantum Electron.8(6), 1307–1315 (2002). [CrossRef]
  78. D. P. Birnie, “Rational solvent selection strategies to combat striation formation during spin coating of thin films,” J. Mater. Res.16(04), 1145–1154 (2001). [CrossRef]
  79. Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express2(12), 1723–1732 (2012). [CrossRef]
  80. Y. Zha, S. Fingerman, S. Cantrell, and C. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids369, 11–16 (2013). [CrossRef]
  81. L. Schares, J. Kash, F. Doany, C. Schow, C. Schuster, D. Kuchta, P. Pepeljugoski, J. Trewhella, C. Baks, R. John, L. Shan, Y. Kwark, R. Budd, P. Chiniwalla, F. Libsch, J. Rosner, C. Tsang, C. Patel, J. Schaub, R. Dangel, F. Horst, B. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. Lin, A. Tandon, G. Trott, M. Nystrom, D. Bour, M. Tan, and D. Dolfi, “Terabus: terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron.12(5), 1032–1044 (2006). [CrossRef]
  82. R. Bockstaele, M. De Wilde, W. Meeus, H. Sergeant, O. Rits, J. Van Campenhout, J. De Baets, P. Van Daele, F. Dorgeuille, S. Eitel, M. Klemenc, R. Annen, J. Van Koetsem, J. Goudeau, B. Bareel, R. Fries, P. Straub, F. Marion, J. Routin, and R. Baets, “Chip-to-chip parallel optical interconnects over optical backpanels based on arrays of multimode waveguides,” Proc. Symp. IEEE/LEOS 61–64 (2004).
  83. D. Butler, M. Li, S. Li, K. Matthews, V. Nazarov, A. Koklyushkin, R. McCollum, Y. Geng, and J. Luther, “Multicore optical fiber and connectors for high bandwidth density, short reach optical links,” presented at the IEEE Optical Interconnects Conference, 5–8 May 2013. [CrossRef]
  84. L. Li, Y. Zou, H. Lin, and J. Hu, Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, and X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney are preparing a manuscript to be called “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects.”
  85. P. Horak, W. Stewart, and W. H. Loh, “Continuously tunable optical buffer with a dual silicon waveguide design,” Opt. Express19(13), 12456–12461 (2011). [CrossRef] [PubMed]
  86. B. Bhola, H. Song, H. Tazawa, and W. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett.17(4), 867–869 (2005). [CrossRef]
  87. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  88. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  89. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express17(10), 8542–8547 (2009). [CrossRef] [PubMed]
  90. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature497(7447), 95–99 (2013). [CrossRef] [PubMed]
  91. T. Kim, R. H. Kim, and J. A. Rogers, “Microscale inorganic light-emitting diodes on flexible and stretchable substrates,” IEEE Photon. J.4(2), 607–612 (2012). [CrossRef]
  92. T. I. Kim, Y. H. Jung, J. Song, D. Kim, Y. Li, H. S. Kim, I. S. Song, J. J. Wierer, H. A. Pao, Y. Huang, and J. A. Rogers, “High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates,” Small8(11), 1643–1649 (2012). [CrossRef] [PubMed]
  93. R. H. Kim, H. Tao, T. I. Kim, Y. Zhang, S. Kim, B. Panilaitis, M. Yang, D. H. Kim, Y. H. Jung, B. H. Kim, Y. Li, Y. Huang, F. G. Omenetto, and J. A. Rogers, “Materials and designs for wirelessly powered implantable light-emitting systems,” Small8(18), 2812–2818 (2012). [CrossRef] [PubMed]
  94. T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science340(6129), 211–216 (2013). [CrossRef] [PubMed]
  95. S. W. Hwang, H. Tao, D. H. Kim, H. Cheng, J. K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y. S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, “A physically transient form of silicon electronics,” Science337(6102), 1640–1644 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited