OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1365–1377

Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm

Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1365-1377 (2013)
http://dx.doi.org/10.1364/OME.3.001365


View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

3 μm Ho3+-doped ZBLAN fiber lasers passively Q-switched by a Fe2+:ZnSe crystal and graphene saturable absorbers were investigated, respectively. 800 ns pulses at 2.93 µm with an energy of 460 nJ and repetition rate of 105 KHz were obtained when a Fe2+:ZnSe crystal was inserted into a free space collimating and focusing setup. A more compact and reliable Q-switched fiber laser was achieved when a graphene coated fiber mirror was butt-coupled to the angle-cleaved end of the gain fiber. 1.2 μs pulses with an energy of 1 μJ and repetition rate of 100 KHz were achieved. More than 100 mW average output power was obtained at the maximum available pump power. Our experiments demonstrate that both Fe2+:ZnSe crystal and graphene are promising saturable absorbers for pulse generation in the 3 µm wavelength region.

© 2013 OSA

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3538) Lasers and laser optics : Lasers, pulsed
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Laser Materials

History
Original Manuscript: June 17, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 25, 2013
Published: August 14, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Citation
Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian, "Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm," Opt. Mater. Express 3, 1365-1377 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. K. Tittel, D. Richter, and A. Fried, ““Mid-infrared laser applications in spectroscopy,” Solid-State Mid-Infrared Laser Sources,” Top. Appl. Phys.89, 458–516 (2003). [CrossRef]
  2. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010). [CrossRef]
  3. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002). [CrossRef]
  4. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-microm band,” Opt. Express18(3), 1946–1951 (2010). [CrossRef] [PubMed]
  5. X. S. Zhu, J. A. Harrington, B. T. Laustsen, and L. G. DeShazer, “Single-crystal YAG fiber optics for the transmission of high energy laser energy,” Proc. SPIE7894, 789415, 789415-7 (2011). [CrossRef]
  6. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010). [CrossRef]
  7. X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett.32(1), 26–28 (2007). [CrossRef] [PubMed]
  8. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009). [CrossRef] [PubMed]
  9. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett.36(15), 2812–2814 (2011). [CrossRef] [PubMed]
  10. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett.36(7), 1104–1106 (2011). [CrossRef] [PubMed]
  11. C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett.30(9), 706–707 (1994). [CrossRef]
  12. C. Frerichs and U. B. Unrau, “Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm,” Opt. Fiber Technol.2(4), 358–366 (1996). [CrossRef]
  13. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett.24(19), 1741–1744 (2012). [CrossRef]
  14. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett.29(4), 334–336 (2004). [CrossRef] [PubMed]
  15. T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho(3+)Pr(3+)-doped fluoride fiber laser,” Opt. Lett.37(11), 2145–2147 (2012). [CrossRef] [PubMed]
  16. J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett.37(12), 2208–2210 (2012). [CrossRef] [PubMed]
  17. J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett.10(4), 045107 (2013). [CrossRef]
  18. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 microm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 microm,” Opt. Express14(2), 678–685 (2006). [CrossRef] [PubMed]
  19. M. Krause, R. Draheim, H. Renner, and E. Brinkmeyer, “Cascaded silicon Raman lasers as mid-infrared sources,” Electron. Lett.42(21), 1224–1226 (2006). [CrossRef]
  20. V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, “3.7 W fluoride glass Raman fiber laser operating at 2231 nm,” Opt. Express20(17), 19412–19419 (2012). [CrossRef] [PubMed]
  21. A. F. Librantz, S. D. Jackson, L. Gomes, S. J. Ribeiro, and Y. Messaddeq, “Pump excited state absorption in holmium-doped fluoride glass,” J. Appl. Phys.103(2), 023105 (2008). [CrossRef]
  22. X. Zhu, J. Zong, R. A. Norwood, A. Chavez-Pirson, N. Peyghambarian, and N. Prasad, “Holmium-doped ZBLAN fiber lasers at 1.2 µm,” Proc. SPIE8237, 823727, 823727-9 (2012). [CrossRef]
  23. A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar'kov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron.36(1), 1–2 (2006). [CrossRef]
  24. A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirova, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE6451, 64510L, 64510L-9 (2007). [CrossRef]
  25. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  26. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  27. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett.93(13), 131905 (2008). [CrossRef]
  28. J. Liu, S. Wu, Q. Yang, and P. Wang, “Mode-locked and Q-switched Yb-doped fiber lasers with graphene saturable absorber,” Proc. SPIE8192, 819244, 819244-7 (2011). [CrossRef]
  29. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98(7), 073106 (2011). [CrossRef]
  30. G. Sobon, J. Sotor, I. Pasternak, K. Grodecki, P. Paletko, W. Strupinski, Z. Jankiewicz, and K. M. Abramski, “Er-doped fiber laser mode-locked by CVD-graphene saturable absorber,” J. Lightwave Technol.30(17), 2770–2775 (2012). [CrossRef]
  31. M. Jiang, H. Ma, Z. Ren, X. Chen, J. Long, M. Qi, D. Shen, Y. Wang, and J. Bai, “A graphene Q-switched nanosecond Tm-doped fiber laser at 2 μm,” Laser Phys. Lett.10(5), 055103 (2013). [CrossRef]
  32. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012). [CrossRef] [PubMed]
  33. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  34. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008). [CrossRef] [PubMed]
  35. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007). [CrossRef] [PubMed]
  36. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  37. S. Yamashita, “A tutorial on nonlinear photonic application of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012). [CrossRef]
  38. V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG q-switched laser with FE2+:ZnSe passive shutter,” Proc. SPIE6610, 661008, 661008-5 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited