OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1385–1396

Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics

Haofeng Li, Jeremy Brouillet, Alan Salas, Xiaoxin Wang, and Jifeng Liu  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 9, pp. 1385-1396 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High crystallinity GeSn substitutional alloy thin films with up to 8.7 at.% Sn are directly grown on amorphous SiO2 layers at low crystallization temperatures of 370~470 °C for potential applications in 3D electronic-photonic integration on Si as well as inexpensive virtual substrates for tandem solar cells. The optimal Ge0.913Sn0.087 thin film demonstrates a strong (111) texture and an average gain size of 10 μm, and its grain boundaries are mostly twin and low-angle boundaries with low densities of defect recombination centers. The 8.7 at.% Sn incorporated substitutionally into the Ge lattice far exceeds the ~1 at.% equilibrium solubility limit. Correspondingly, the direct band gap is significantly red-shifted from 0.8 eV for pure Ge to ~0.5 eV for crystalline Ge0.913Sn0.087, right at the verge of the indirect-to-direct gap transition that occurs at 8-10 at.% Sn alloying. Optoelectronic properties are greatly enhanced due to this transition.

© 2013 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.6000) Materials : Semiconductor materials
(250.5300) Optoelectronics : Photonic integrated circuits
(310.0310) Thin films : Thin films
(310.3840) Thin films : Materials and process characterization
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: July 16, 2013
Revised Manuscript: August 10, 2013
Manuscript Accepted: August 10, 2013
Published: August 15, 2013

Haofeng Li, Jeremy Brouillet, Alan Salas, Xiaoxin Wang, and Jifeng Liu, "Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics," Opt. Mater. Express 3, 1385-1396 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kirchain and L. C. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007). [CrossRef]
  2. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE Sel. Top. Quantum. Electron.12(6), 1678–1687 (2006). [CrossRef]
  3. J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008). [CrossRef]
  4. D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  5. M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008). [CrossRef]
  6. J. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010). [CrossRef] [PubMed]
  7. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojoromeo, F. Mandorlo, D. Marris Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, 2006), pp. 200–202.
  8. P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express15(20), 12686–12691 (2007). [CrossRef] [PubMed]
  9. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  10. K. Wada, “Challenges of Si Photonics for on-chip Integration,” in Proceedings of European Conference of Optical Communication (ECOC), (Vienna, Austria, September, 2009), paper 2.7.3.
  11. F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells,” MRS Bull.32(03), 230–235 (2007). [CrossRef]
  12. H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005). [CrossRef]
  13. C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004). [CrossRef]
  14. C. M. Yang and H. A. Atwater, “Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett.68(24), 3392–3394 (1996). [CrossRef]
  15. K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012). [CrossRef]
  16. S. Gupta, B. Vincent, B. Yang, D. Lin, F. Gencarelli, J.-Y. J. Lin, R. Chen, O. Richard, H. Bender, B. Magyari-Köpe, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method,” in Proceedings of IEEE Electronic Device Meeting (Institute of Electrical and Electronics Engineers, San Francisco, 2012), pp. 16.2.1–16.2.4. [CrossRef]
  17. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011). [CrossRef]
  18. R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011). [CrossRef]
  19. B. Predel, “Ge-Sn binary phase diagram,” in Landolt-Börnstein Database: Group IV Physical Chemistry, Numerical Data and Functional Relationship in Science and Technology. O. Madelung ed. New Series IV/5, vol. 5f (Springer, 2013). http://www.springermaterials.com/docs/info/10501684_1506.html .
  20. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006). [CrossRef]
  21. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011). [CrossRef]
  22. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009). [CrossRef]
  23. G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett.79(10), 1937–1940 (1997). [CrossRef]
  24. H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003). [CrossRef]
  25. M. G. Mauk, Liquid Phase Epitaxy of Electronic, Optical, and Optoelectronic Materials (Wiley, 2007), Chap. 5.
  26. A. S. Saidov, A. Sh. Razzakov, and É. A. Koshchanov, “Liquid phase epitaxy of Ge1-xSnx thin fims,” Tech. Phys. Lett.27(8), 698–700 (2001). [CrossRef]
  27. R. A. Soref and L. Friedman, “Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct.14(2-3), 189–193 (1993). [CrossRef]
  28. R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007). [CrossRef]
  29. R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc.110(6), 524–527 (1963). [CrossRef]
  30. R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010). [CrossRef]
  31. P. Water, Stress Analysis and Mechanical Characterization of Thin Films for Microelectronics and MEMS Applications (ProQuest, 2008), Chap. 3, pp. 78–95.
  32. V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007). [CrossRef]
  33. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter39(3), 1871–1883 (1989). [CrossRef] [PubMed]
  34. J. F. Shackelford, Introduction to Materials Science for Engineers, 5th Ed. (Prentice-Hall, 2000), Chap. 4.
  35. W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007). [CrossRef]
  36. A. Frova and P. Handler, “Franz-Keldysh effect in the space-charge region of a germanium p-n junction,” Phys. Rev.137(6A), A1857–A1862 (1965). [CrossRef]
  37. J. F. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett.34(11), 1738–1740 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited