OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1420–1427

NIR and UV enhanced photon detector made by diindium trichalcogenides

Ching-Hwa Ho and Yi-Ping Wang  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1420-1427 (2013)
http://dx.doi.org/10.1364/OME.3.001420


View Full Text Article

Enhanced HTML    Acrobat PDF (1750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

III-VI compounds In2S3 and In2Se3 are potential optical-absorption materials used for solar energy conversion and photon detection applications. The natural surface oxide and intrinsic chalcogen vacancies in In2X3 (X = S, Se) facilitate photoelectric conversion in near infrared (NIR) to ultraviolet (UV) region. In this work, In2S3 and In2Se3 crystals have been grown by chemical vapor transport method using ICl3 as a transport agent. The as-grown In2S3 presents β phase with a tetragonal lattice (β-In2S3) while In2Se3 reveals a hexagonal layer structure of α phase (α-In2Se3). The band-edge property of β-In2S3 and α-In2Se3 has been evaluated by transmittance and thermoreflectance spectroscopy. The direct band gaps have been determined to be Eg = 1.935 eV for β-In2S3, and Eg = 1.453 eV for α-In2Se3, respectively. The optoelectronic and photoelectric conversion properties of III-VI In2S3 and In2Se3 are examined by surface photovoltage, surface photoconductive response, photoluminescence, and photoconductivity measurements. The experimental evaluations show In2X3 a well-functional material in photoelectric conversion and photodetection from near IR to UV region with the auxiliary of intrinsic defects and surface formation oxides existed in the chalcogenides.

© 2013 OSA

OCIS Codes
(040.5150) Detectors : Photoconductivity
(040.5160) Detectors : Photodetectors
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials

ToC Category:
Semiconductors

History
Original Manuscript: July 9, 2013
Revised Manuscript: August 11, 2013
Manuscript Accepted: August 11, 2013
Published: August 21, 2013

Citation
Ching-Hwa Ho and Yi-Ping Wang, "NIR and UV enhanced photon detector made by diindium trichalcogenides," Opt. Mater. Express 3, 1420-1427 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1420


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008). [CrossRef]
  2. S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998). [CrossRef]
  3. R. Diehl and R. Nitsche, “Vapour and flux growth of γ-In2S3, a new modification of indium sesquisulphide,” J. Cryst. Growth20(1), 38–46 (1973). [CrossRef]
  4. S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003). [CrossRef]
  5. M. Ishikawa and T. Nakayama, “Stacking and optical properties of layered In2Se3,” Jpn. J. Appl. Phys.37(Part 2, No. 10A), L1122–L1124 (1998). [CrossRef]
  6. M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Jpn. J. Appl. Phys.36(Part 2, No. 12A), L1576–L1579 (1997). [CrossRef]
  7. W. Rehwald and G. Harbeke, “On the conduction mechanism in single crystal β-indium sulfide In2S3,” J. Phys. Chem. Solids26(8), 1309–1324 (1965). [CrossRef]
  8. S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996). [CrossRef]
  9. J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998). [CrossRef]
  10. J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002). [CrossRef]
  11. R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006). [CrossRef]
  12. Y. P. Wang, C. H. Ho, and Y. S. Huang, “The study of photoconductive response in indium sulfide crystals,” J. Phys. D Appl. Phys.43(41), 415301 (2010). [CrossRef]
  13. C. H. Ho, “Growth and characterization of near-band-edge transitions in β-In2S3 single crystals,” J. Cryst. Growth312(19), 2718–2723 (2010). [CrossRef]
  14. C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004). [CrossRef]
  15. G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999). [CrossRef]
  16. D. E. Aspnes, in Handbook on Semiconductors, edited by M. Balkanski (North Holland, 1980).
  17. R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008). [CrossRef]
  18. C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010). [CrossRef]
  19. R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005). [CrossRef]
  20. C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited