OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1428–1437

Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass

Allison Schaap and Yves Bellouard  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1428-1437 (2013)
http://dx.doi.org/10.1364/OME.3.001428


View Full Text Article

Enhanced HTML    Acrobat PDF (2130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fabrication of complex, three-dimensional microscale shapes that can be replicated over large surfaces is an ongoing challenge, albeit one with a wide range of possible applications such as engineered surfaces with tuned wetting properties, scaffolds for cell studies, or surfaces with tailored optical properties. In this work, we use a two-step femtosecond laser direct-write technique and wet-etching process to fabricate monolithic glass micromolds with complex three-dimensional surface topologies, and demonstrate the replication of these structures in a soft polymer (polydimethylsiloxane, PDMS). To estimate the forces experienced during the demolding for one representative structure, we use a combination of two models – a simple linear elastic model and a numerical hyperelastic model. These models are used to support the high experimental success rates of the demolding process observed, despite the high strain induced in the material during demolding. Since the process used is scalable, this work opens new avenues for low-cost fabrication of surfaces having complex microscale patterns with three-dimensional geometries.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Laser Materials Processing

History
Original Manuscript: June 25, 2013
Revised Manuscript: July 20, 2013
Manuscript Accepted: August 3, 2013
Published: August 14, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

Citation
Allison Schaap and Yves Bellouard, "Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass," Opt. Mater. Express 3, 1428-1437 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jagota and C.-Y. Hui, “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces," Mater. Sci. Eng. R-Reports72, 253–292 (2011).
  2. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004). [CrossRef] [PubMed]
  3. D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng.19(11), 115002 (2009). [CrossRef]
  4. T. G. Leong, A. M. Zarafshar, and D. H. Gracias, “Three-dimensional fabrication at small size scales,” Small6(7), 792–806 (2010). [CrossRef] [PubMed]
  5. J. G. Fernandez and A. Khademhosseini, “Micro-masonry: Construction of 3D structures by microscale self-assembly,” Adv. Mater.22(23), 2538–2541 (2010). [CrossRef] [PubMed]
  6. N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008). [CrossRef]
  7. C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007). [CrossRef] [PubMed]
  8. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008). [CrossRef]
  9. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010). [CrossRef]
  10. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010). [CrossRef] [PubMed]
  11. C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011). [CrossRef]
  12. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004). [CrossRef]
  13. S. Maruo, “Femtosecond laser stereolithography and replication technique for MEMS application,” in Conference on Lasers Electro Optics The Pacific Rim Conference on Lasers and Electro-Optics, 2009. CLEO/PACIFIC RIM ’09 (2009), pp. 1–2. [CrossRef]
  14. D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives,” Smart Mater. Struct.19(10), 103001 (2010). [CrossRef]
  15. L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010). [CrossRef] [PubMed]
  16. C. Greiner, A. D. Campo, and E. Arzt, “Adhesion of bioinspired micropatterned Surfaces: Effects of pillar radius, aspect ratio, and preload,” Langmuir23(7), 3495–3502 (2007). [CrossRef] [PubMed]
  17. F. Madani-Grasset and Y. Bellouard, “Femtosecond laser micromachining of fused silica molds,” Opt. Express18(21), 21826–21840 (2010). [CrossRef] [PubMed]
  18. K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003). [CrossRef] [PubMed]
  19. X. Q. Brown, K. Ookawa, and J. Y. Wong, “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials26(16), 3123–3129 (2005). [CrossRef] [PubMed]
  20. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008). [CrossRef]
  21. D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008). [CrossRef]
  22. R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012). [CrossRef] [PubMed]
  23. M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).
  24. T. K. Kim, J. K. Kim, and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng.88(8), 1982–1985 (2011). [CrossRef]
  25. D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011). [CrossRef]
  26. A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices7(4), 281–293 (2005). [CrossRef] [PubMed]
  27. J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011). [CrossRef]
  28. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express18(20), 21490–21497 (2010). [CrossRef] [PubMed]
  29. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004). [CrossRef]
  30. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009). [CrossRef]
  31. Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited