OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1459–1467

Plan-view transmission electron microscopy study on coalescence overgrowth of GaN nano-columns by MOCVD

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chie-Tong Kuo, and Hsiang-Chen Wang  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 9, pp. 1459-1467 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the nanostructure study results, mainly based on plan-view transmission electron microscopy (TEM) on the coalescence process during the overgrowth by metalorganic chemical vapor deposition of GaN nanocolumns grown by molecular beam epitaxy. In cross-section scanning electron microscopy images, one can observe a two-stage coalescence overgrowth process. First, a group of nearby nanocolumns is merged into a thicker column. One of the possible merging processes is the growth of a bridging domain between two columns for their connection. The thicker columns are then developed into horn-shaped structures for the second-stage coalescence. Because different columns may have different crystal orientations, stacking faults can be formed for implementing the coalescence between two domains. Such stacking faults around the boundaries of merged domains represent one of the major kinds of defect after the threading dislocation density is reduced based on the nanocolumn growth technique.

© 2013 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.5293) Materials : Photonic bandgap materials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 23, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: August 22, 2013
Published: August 26, 2013

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chie-Tong Kuo, and Hsiang-Chen Wang, "Plan-view transmission electron microscopy study on coalescence overgrowth of GaN nano-columns by MOCVD," Opt. Mater. Express 3, 1459-1467 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Moram, C. S. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zhang, M. J. Kappers, and C. J. Humphreys, “On the origin of threading dislocations in GaN films,” J. Appl. Phys.106(7), 073513 (2009). [CrossRef]
  2. F. A. Marino, S. Membe, N. Faralli, T. Palacios, D. K. Ferry, S. M. Goodnick, and M. Saraniti, “Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors,” IEEE T. Electron Dev.57(1), 353–360 (2010). [CrossRef]
  3. M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau and P. Vennegu’es,“ Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28, 035006 (8pp) (2013).
  4. R. J. Kamaladasa, F. Liu, L. M. Porter, R. F. Davis, D. D. Koleske, G. Mulholland, K. A. Jones, and Y. N. Picard, “Identifying threading dislocations in GaN films and substrates by electron channelling,” J. Microsc.244(3), 311–319 (2011). [CrossRef] [PubMed]
  5. Y. Y. Wong, E. Y. Chang, T. H. Yang, J. R. Chang, J. T. Ku, M. K. Hudait, W. C. Chou, M. Chen, and K. L. Lin, “The roles of threading dislocations on electrical properties of AlGaN/GaN heterostructure grown by MBE,” J. Electrochem. Soc.157(7), H746–H749 (2010).
  6. H.-C. Wang, T.-Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, “Carrier dynamics in coalescence overgrowth of GaN nanocolumns,” Thin Solid Films519(2), 863–867 (2010). [CrossRef]
  7. J. Wang, L. W. Guo, H. Q. Jia, Y. Wang, Z. G. Xing, W. Li, H. Chen, and J. M. Zhou, “Fabrication of patterned sapphire substrate by wet chemical etching for maskless lateral overgrowth of GaN,” J. Electrochem. Soc.153(3), C182–C185 (2006). [CrossRef]
  8. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett.89(16), 161105 (2006). [CrossRef]
  9. T. Riemann, T. Hempel, J. Christen, P. Veit, R. Clos, A. Dadgar, A. Krost, U. Haboeck, and A. Hoffmann, “Optical and structural microanalysis of GaN grown on SiN submonolayers,” J. Appl. Phys.99(12), 123518 (2006). [CrossRef]
  10. K. Y. Zang, Y. D. Wang, L. S. Wang, S. Y. Chow, and S. J. Chua, “Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111),” J. Appl. Phys.101(9), 093502 (2007). [CrossRef]
  11. X. L. Fang, Y. Q. Wang, H. Meidia, and S. Mahajan, “Reduction of threading dislocations in GaN layers using in situ deposited silicon nitride masks on AlN and GaN nucleation layers,” Appl. Phys. Lett.84(4), 484 (2004). [CrossRef]
  12. R. C. Tu, C. C. Chuo, S. M. Pan, Y. M. Fan, C. E. Tsai, C. J. Tun, G. C. Chi, B. C. Lee, and C. P. Lee, “Improvement of near-ultraviolet InGaN/GaN light-emitting diodes by inserting an in situ rough SiNx interlayer in n-GaN layers,” Appl. Phys. Lett.83(17), 3608 (2003). [CrossRef]
  13. Z. T. Lin, H. Yang, S. H. Zhou, H. Y. Wang, X. S. Hong, and G. Q. Li, “Pattern Design of and Epitaxial Growth on Patterned Sapphire Substrates for Highly Efficient GaN-Based LEDs,” Cryst. Growth Des.12(6), 2836–2841 (2012). [CrossRef]
  14. J.-H. Park, R. Navamathavan, and C.-R. Lee, “Size effects of nano-pattern in Si(1 1 1) substrate on the selective growth behavior of GaN nanowires by MOCVD,” Mater. Res. Bull.47, 836–842 (2012).
  15. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, “Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates,” Appl. Phys. Lett.97(15), 151909 (2010). [CrossRef]
  16. H. S. Cheong, C. S. Park, C. H. Hong, J. H. Yi, S. J. Leem, and H. K. Cho, “Structural and optical properties of lateral overgrown GaN grown by double pendeo-epitaxy technique,” Phys. Status Solidi0(c), 550–553 (2002).
  17. Z. Y. Chao, X. Z. Gang, M. Z. Guang, C. Yao, D. G. Jian, X. P. Qiang, D. C. Ming, C. Hong, and L. X. Yun, “Threading dislocation density comparison between GaN grown on the patterned and conventional sapphire substrate by high resolution X-ray diffraction,” Science China Physics, Mechanics and Astronomy53(3), 465–468 (2010). [CrossRef]
  18. L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, “Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy,” Appl. Phys. Lett.82(10), 1601 (2003). [CrossRef]
  19. L. Li, L.-A. Yang, J.-C. Zhang, J.-S. Xue, S.-R. Xu, L. Lv, Y. Hao, and M.-T. Niu, “Threading dislocation reduction in transit region of GaN terahertz Gunn diodes,” Appl. Phys. Lett.100(7), 072104 (2012). [CrossRef]
  20. C.-Y. Cho, S.-J. Lee, S.-H. Hong, S.-C. Park, S.-E. Park, Y. Park, and S.-J. Park, “Growth and Separation of High Quality GaN Epilayer from Sapphire Substrate by Lateral Epitaxial Overgrowth and Wet Chemical Etching,” Appl. Phys. Express4(1), 012104 (2011). [CrossRef]
  21. T. Suzuki, S. Yagi, and T. Motooka, “Optical absorption properties of Mg-doped GaN nanocolumns,” J. Appl. Phys.98(10), 104303 (2005). [CrossRef]
  22. M.-H. Lin, H.-C. Wen, C.-Y. Huang, Y.-R. Jeng, W.-H. Yau, W.-F. Wu, and C.-P. Chou, “Nanoindentation characterization of GaN epilayers on A-plane sapphire Substrates,” Appl. Surf. Sci.256(11), 3464–3467 (2010). [CrossRef]
  23. D. Li, X. Sun, H. Song, Z. Li, Y. Chen, G. Miao, and H. Jiang, “Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett.98(1), 011108 (2011). [CrossRef]
  24. H.-M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y.-H. Cho, and K. S. Chung, “Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy,” Appl. Phys. Lett.81, 2193 (2001).
  25. J. Sanchez-Paramo, J. M. Calleja, M. A. Sanchez-Garcia, E. Calleja, and U. Jahn, “Structural and optical characterization of intrinsic GaN nanocolumns,” Physica E13(2-4), 1070–1073 (2002). [CrossRef]
  26. Y. Inoue, T. Hoshino, S. Takeda, K. Ishino, A. Ishida, H. Fujiyasu, H. Kominami, H. Mimura, Y. Nakanishi, and S. Sakakibara, “Strong luminescence from dislocation-free GaN nanopillars,” Appl. Phys. Lett.85(12), 2340 (2004). [CrossRef]
  27. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) si substrate,” Jpn. J. Appl. Phys.43(No. 12A), L1524–L1526 (2004). [CrossRef]
  28. K. Kusakabe, A. Kikuchi, and K. Kishino, “Characterization of Overgrown GaN Layers on Nano-Columns Grown by RF-Molecular Beam Epitaxy,” Jpn. J. Appl. Phys.40(Part 2, No. 3A), L192–L194 (2001). [CrossRef]
  29. J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett.97(11), 111105 (2010). [CrossRef]
  30. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett.98(17), 171111 (2011). [CrossRef]
  31. Y. Taniyasu and M. Kasu, “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices,” Appl. Phys. Lett.99(25), 251112 (2011). [CrossRef]
  32. E. Francesco Pecora, W. Zhang, A. Y. Nikiforov, L. Zhou, D. J. Smith, J. Yin, R. Paiella, L. D. Negro, and T. D. Moustakas, “Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations,” Appl. Phys. Lett.100, 061111 (2012).
  33. G. Liu, J. Zhang, X. H. Li, G. S. Huang, T. Paskova, K. R. Evans, H. Zhao, and N. Tansu, “Metalorganic vapor phase epitaxy and characterizations of nearly-lattice-matched AlInN alloys on GaN/sapphire templates and free-standing GaN substrates,” J. Cryst. Growth340(1), 66–73 (2012). [CrossRef]
  34. R. B. Chung, F. Wu, R. Shivaraman, S. Keller, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Growth study and ipurity characterization of AlxIn1−xN grown by metal organic chemical vapor deposition,” J. Cryst. Growth324(1), 163–167 (2011). [CrossRef]
  35. A. Urban, J. Malindretos, J.-H. Klein-Wiele, P. Simon, and A. Rizzi, “Ga-polar GaN nanocolumn arrays with semipolar faceted tips,” New J. Phys.15(5), 053045 (2013). [CrossRef]
  36. K. J. Lethy, P. R. Edwards, C. Liu, W. N. Wang, and R. W. Martin, “Cross-sectional and plan-view cathodoluminescence of GaN partially coalesced above a nanocolumn array,” J. Appl. Phys.112(2), 023507 (2012). [CrossRef]
  37. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett.6(8), 1808–1811 (2006). [CrossRef] [PubMed]
  38. Y. Cordier, O. Tottereau, L. Nguyen, M. Ramdani, A. Soltani, M. Boucherit, D. Troadec, F. Y. Lo, Y. Y. Hu, A. Ludwig, and A. D. Wieck, “Growth of GaN based structures on focused ion beam patterned templates,” Phys. Status Solidi C8(5), 1516–1519 (2011). [CrossRef]
  39. H. Zhang, Y. Shao, L. Zhang, X. Hao, Y. Wu, X. Liu, Y. Dai, and Y. Tian, “Growth of high quality GaN on a novel designed bonding-thinned template by HVPE,” CrystEngComm14(14), 4777–4780 (2012). [CrossRef]
  40. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nano-patterned agog sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009). [CrossRef]
  41. Y. K. Ee, X. H. Li, J. E. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010). [CrossRef]
  42. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited