OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1474–1487

Si-CMOS compatible materials and devices for mid-IR microphotonics

Pao Tai Lin, Vivek Singh, Jianfei Wang, Hongtao Lin, Juejun Hu, Kathleen Richardson, J. David Musgraves, Igor Luzinov, Joel Hensley, Lionel C. Kimerling, and Anu Agarwal  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1474-1487 (2013)
http://dx.doi.org/10.1364/OME.3.001474


View Full Text Article

Enhanced HTML    Acrobat PDF (2513 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

CMOS compatible mid-Infrared (mid-IR) microphotonics including (1) broadband SOUP (Silicon on Oxide Undercladding Pedestal) waveguides; and (2) mid-IR transparent chalcogenide glass (ChGs) waveguides monolithically integrated with a PbTe thin film photodetector; are demonstrated. Using a pedestal undercladding geometry we obtain an optical loss for our Si waveguide which is 10 dB/cm lower compared to other waveguides using planar SiO2 cladding at λ = 5 µm, and a fundamental mode is seen over a broad mid-IR spectral range. To realize a fully integrated mid-IR on-chip system, in parallel, we develop PbTe thin film detectors that can be deposited on various mid-IR platforms through a thermal evaporation technique, offering high photoresponsivity of 25 V/W from λ = 1 µm to 4 µm. The detector can be efficiently integrated, using a suitable spacer, to an underlying Chalcogenide glass (ChGs) waveguide. Our results of low loss waveguides and integrated thin film detectors enable Si-CMOS microphotonics for mid-IR applications.

© 2013 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials

ToC Category:
Semiconductors

History
Original Manuscript: July 1, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 14, 2013
Published: August 26, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express
September 3, 2013 Spotlight on Optics

Citation
Pao Tai Lin, Vivek Singh, Jianfei Wang, Hongtao Lin, Juejun Hu, Kathleen Richardson, J. David Musgraves, Igor Luzinov, Joel Hensley, Lionel C. Kimerling, and Anu Agarwal, "Si-CMOS compatible materials and devices for mid-IR microphotonics," Opt. Mater. Express 3, 1474-1487 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011). [CrossRef] [PubMed]
  3. J. Ozhikandathil and M. Packirisamy, “Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection,” J. Biomed. Opt.17(1), 017006 (2012). [CrossRef] [PubMed]
  4. A. Chandrasekaran and M. Packirisamy, “Integrated Microfluidic Biophotonic Chip for Laser Induced Fluorescence Detection,” Biomed. Microdevices12(5), 923–933 (2010). [CrossRef] [PubMed]
  5. K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012). [CrossRef] [PubMed]
  6. M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012). [CrossRef]
  7. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011). [CrossRef] [PubMed]
  8. P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. doi: (2013). [CrossRef]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  10. P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009). [CrossRef]
  11. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011). [CrossRef] [PubMed]
  12. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  13. H. Gunzler and H. U. Gremlich, IR Spectroscopy: An Introduction (Wiley-VCH, 2002).
  14. R. M. Silverstein, F. X. Webster, and D. Kiemle, Spectrometric Identification of Organic Compounds (Wiley, 2005).
  15. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006). [CrossRef]
  16. Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express19(17), 15803–15809 (2011). [CrossRef] [PubMed]
  17. P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013). [CrossRef]
  18. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011). [CrossRef] [PubMed]
  19. P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007). [CrossRef]
  20. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010). [CrossRef] [PubMed]
  21. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011). [CrossRef] [PubMed]
  22. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013). [CrossRef] [PubMed]
  23. P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013). [CrossRef] [PubMed]
  24. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003). [CrossRef]
  25. Lead Selenide Detectors, Available: http://www.judsontechnologies.com/lead_sel.html
  26. D. E. Bode, Lead Salt Detectors vol. 3 (Academic Press, 1966).
  27. J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008). [CrossRef]
  28. J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012). [CrossRef]
  29. M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006). [CrossRef]
  30. J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011). [CrossRef]
  31. J. Wang thesis, “Resonant-cavity-enhanced Multispectral Infrared Photodetectors for Monolithic Integration on Silicon,” Ph.D., Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (2010).
  32. R. L. Petritz, “Theory of Photoconductivity in Semiconductor Films,” Phys. Rev.104(6), 1508–1516 (1956). [CrossRef]
  33. J. C. Slater, “Barrier Theory of the Photoconductivity of Lead Sulfide,” Phys. Rev.103(6), 1631–1644 (1956). [CrossRef]
  34. A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012). [CrossRef] [PubMed]
  35. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  36. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry
  37. C. Y. Liang and S. Krimm, “Infrared Spectra of High Polymers–Part IX: Polyethylene Terephthalate,” J. Mol. Spectrosc.3(1-6), 554–574 (1959). [CrossRef]
  38. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited