OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1488–1503

Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications

H. Tilanka Munasinghe, Anja Winterstein-Beckmann, Christian Schiele, Danilo Manzani, Lothar Wondraczek, Shahraam Afshar V., Tanya M. Monro, and Heike Ebendorff-Heidepriem  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1488-1503 (2013)
http://dx.doi.org/10.1364/OME.3.001488


View Full Text Article

Enhanced HTML    Acrobat PDF (3536 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers.

© 2013 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2750) Materials : Glass and other amorphous materials
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 18, 2013
Manuscript Accepted: August 18, 2013
Published: August 27, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Citation
H. Tilanka Munasinghe, Anja Winterstein-Beckmann, Christian Schiele, Danilo Manzani, Lothar Wondraczek, Shahraam Afshar V., Tanya M. Monro, and Heike Ebendorff-Heidepriem, "Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications," Opt. Mater. Express 3, 1488-1503 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1488


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W.  Hall, M. A.  Newhouse, N. F.  Borrelli, W. H.  Dumbaugh, D. L.  Weidman, “Nonlinear optical susceptibilities of high-index glasses,” App. Phys. Lett. 54(14), 1293–1295 (1989). [CrossRef]
  2. H.  Ebendorff-Heidepriem, T. M.  Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007). [CrossRef] [PubMed]
  3. T. M.  Monro, H.  Ebendorff-Heidepriem, “Progress in microstructured optical fibres,” Ann. Rev. Mater. Res. 36(1), 467–495 (2006). [CrossRef]
  4. T. M.  Monro, S.  Warren-Smith, E. P.  Schartner, A.  François, S.  Heng, H.  Ebendorff-Heidepriem, S.  Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010). [CrossRef]
  5. M. A.  Ettabib, L.  Jones, J.  Kakande, R.  Slavík, F.  Parmigiani, X.  Feng, F.  Poletti, G. M.  Ponzo, J.  Shi, M. N.  Petrovich, W. H.  Loh, P.  Petropoulos, D. J.  Richardson, “Phase sensitive amplification in a highly nonlinear lead-silicate fiber,” Opt. Express 20(2), 1629–1634 (2012). [CrossRef] [PubMed]
  6. N.  Granzow, S. P.  Stark, M. A.  Schmidt, A. S.  Tverjanovich, L.  Wondraczek, P. S.  Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011). [CrossRef] [PubMed]
  7. N.  Granzow, M. A.  Schmidt, W.  Chang, L.  Wang, Q.  Coulombier, J.  Troles, P.  Toupin, I.  Hartl, K. F.  Lee, M. E.  Fermann, L.  Wondraczek, P. S.  Russell, “Mid-infrared supercontinuum generation in As2S3-silica nano-spike step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013). [CrossRef] [PubMed]
  8. S.  Shahi, S.  Harun, H.  Ahmad, “Multi-wavelength Brillouin fiber laser using a holey fiber and a bismuth-oxide based erbium-doped fiber,” Laser Phys. Lett. 6(6), 454–457 (2009). [CrossRef]
  9. D. G.  Lancaster, S.  Gross, H.  Ebendorff-Heidepriem, K.  Kuan, T. M.  Monro, M.  Ams, A.  Fuerbach, M. J.  Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm^3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  10. B.  Richards, Y.  Tsang, D.  Binks, J.  Lousteau, A.  Jha, “Efficient ∼2 μm Tm^3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008). [CrossRef] [PubMed]
  11. B.  Richards, A.  Jha, Y.  Tsang, D.  Binks, J.  Lousteau, F.  Fusari, A.  Lagatsky, C.  Brown, W.  Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010). [CrossRef]
  12. A.  Mori, Y.  Ohishi, S.  Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997). [CrossRef]
  13. A.  Mori, H.  Masuda, K.  Shikano, M.  Shimizu, “Ultra-wide-band tellurite-based fiber aman amplifier,” J. Lightwave Technol. 21(5), 1300–1306 (2003). [CrossRef]
  14. P.  Domachuk, N. A.  Wolchover, M.  Cronin-Golomb, A.  Wang, A. K.  George, C. M. B.  Cordeiro, J. C.  Knight, F. G.  Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  15. M.  Liao, C.  Chaudhari, G.  Qin, X.  Yan, T.  Suzuki, Y.  Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]
  16. M.  Liao, W.  Gao, Z.  Duan, X.  Yan, T.  Suzuki, Y.  Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20(2), 1141–1150 (2012). [CrossRef] [PubMed]
  17. D.  Buccoliero, H.  Steffensen, H.  Ebendorff-Heidepriem, T. M.  Monro, O.  Bang, “Midinfrared optical rogue waves in soft glass photonic crystal fiber,” Opt. Express 19(19), 17973–17978 (2011). [CrossRef] [PubMed]
  18. H.  Ebendorff-Heidepriem, C.  Schiele, A.  Winterstein, L.  Wondraczek, D. G.  Lancaster, D. J.  Ottaway, T. M.  Monro, “New germanate glasses for infrared fibre applications,” in Proceedings of the 37th Australian Conference on Opt. Fibre Technol., paper no. 518.00 (Sydney, Australia, Dec2013).
  19. X.  Jiang, J.  Lousteau, A.  Jha, “The Structural Thermal, and Opt. Analyses of Multicomponent Germanium Oxide Glasses for Engineering Mid-Infrared Fiber Chemical Sensing,” J. Am. Ceram. Society 93(10), 3259–3266 (2010). [CrossRef]
  20. J.  Wu, Z.  Yao, J.  Zong, S.  Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007). [CrossRef] [PubMed]
  21. X.  Jiang, J.  Lousteau, S.  Shen, A.  Jha, “Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics,” J. Non-Cryst. Solids 355, 2015–2019 (2009). [CrossRef]
  22. A.  Lin, A.  Ryasnyanskiy, J.  Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass.” Opt. Lett. 36(5), 740–742 (2011). [CrossRef] [PubMed]
  23. M. F.  Churbanov, A. N.  Moiseev, A. V.  Chilyasov, V. V.  Dorofeev, I. A.  Kraev, M. M.  Lipatova, T. V.  Kotereva, E. M.  Dianov, V. G.  Plotnichenko, E. B.  Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. M. 9(10), 3229–3234 (2007).
  24. H.  Ebendorff-Heidepriem, K.  Kuan, M. R.  Oermann, K.  Knight, T. M.  Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2(4), 432–442 (2012). [CrossRef]
  25. X.  Jiang, J.  Lousteau, B.  Richards, A.  Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31(11), 1701–1706 (2009). [CrossRef]
  26. A.  Winterstein, S.  Manning, H.  Ebendorff-Heidepriem, L.  Wondraczek, “Luminescence from bismuth-germanate glasses and its manipulation through oxidants,” Opt. Mater. Express 2(10), 1320–1328 (2012). [CrossRef]
  27. M. R.  Oermann, H.  Ebendorff-Heidepriem, Y.  Li, T.-C.  Foo, T. M.  Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: Erbium doped lanthanum-tellurite glass,” Opt. Express 17(18), 15578–15584 (2009). [CrossRef] [PubMed]
  28. S.  Manning, “Personal communication,” Defence Science and Technol.Organisation (DSTO), Salisbury, Australia.
  29. W. Q.  Zhang, H.  Ebendorff-Heidepriem, T. M.  Monro, S.  Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express 19(22), 21135–21144 (2011). [CrossRef] [PubMed]
  30. H.  Ebendorff-Heidepriem, S. C.  Warren-Smith, T. M.  Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009). [CrossRef] [PubMed]
  31. J.  Bei, T. M.  Monro, A.  Hemming, H.  Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3(3), 318–328 (2013). [CrossRef]
  32. W.  Vogel, Glass chemistry (Springer-Verlag, 1994). [CrossRef]
  33. J. S.  Wang, E.  Vogel, E.  Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994). [CrossRef]
  34. S.  Manning, H.  Ebendorff-Heidepriem, T. M.  Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2(2), 140–152 (2012). [CrossRef]
  35. J.  Wang, J. R.  Lincoln, W. S.  Brocklesby, R. S.  Deol, C. J.  Mackechnie, A.  Pearson, A. C.  Tropper, D. C.  Hanna, D. N.  Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. App. Phys. 73(12), 8066–8075 (1993). [CrossRef]
  36. V.  Sigaev, I.  Gregora, P.  Pernice, B.  Champagnon, E.  Smelyanskaya, A.  Aronne, P.  Sarkisov, “Structure of lead germanate glasses by Raman spectroscopy,” J. Non-Cryst. Solids 279, 136–144 (2001). [CrossRef]
  37. M.  Dussauze, A.  Giannoudakos, L.  Velli, C. P. E.  Varsamis, M.  Kompitsas, E. I.  Kamitsos, “Structure and optical properties of amorphous lead-germanate films developed by pulsed-laser deposition.” J. Chem. Phys. 127(3), 34704 (2007). [CrossRef]
  38. V.  Dimitrov, T.  Komatsu, “An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength,” J. Univ. Chem. Technol. Metall 45(3), 219–250 (2010).
  39. M.D.  O’Donnell, C.A.  Miller, D.  Furniss, V.K.  Tikhomirov, A.B.  Seddon, “Fluorotellurite glasses with improved mid-infrared transmission,” J. Non-Cryst. Solids 331, 48–57 (2003). [CrossRef]
  40. Y.  Abe, D. E.  Clark, “Determination of combined water in glasses by infrared spectroscopy,” J. Mater. Sci. Lett. 9(2), 244–245 (1990). [CrossRef]
  41. C. A.  Fenstermaker, F. L.  McCrackin, “Errors arising from surface roughness in ellipsometric measurement of the refractive index of a surface,” Surf. Sci., 85–96 (1969). [CrossRef]
  42. B.  Johs, C. M.  Herzinger, “Quantifying the accuracy of ellipsometer systems,” physica status solidi (c) 5(5), 1031–1035 (2008).
  43. G.  Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993). [CrossRef]
  44. H.  Tompkins, E. A.  Irene, Handbook of Ellipsometry(Google eBook)(William Andrew, 2005). [CrossRef]
  45. A.  Boskovic, S. V.  Chernikov, J. R.  Taylor, L.  Gruner-Nielsen, O. A.  Levring, “Direct continuous-wave measurement of n 2 in various types of telecommunication fiber at 155 m,” Opt. Lett. 21(24), 1966–1968 (1996). [CrossRef] [PubMed]
  46. G.  Agrawal, Nonlinear Fiber Optics (Google eBook) (Academic Press, 2012).
  47. S.  Friberg, P.  Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Elect. 23(12), 2089–2094 (1987). [CrossRef]
  48. P.  Petropoulos, H.  Ebendorff-Heidepriem, V.  Finazzi, R.C.  Moore, K.  Frampton, D.J.  Richardson, T.M.  Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003). [CrossRef] [PubMed]
  49. J.  Bei, T. M.  Monro, A.  Hemming, H.  Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3(9), 1285–1301 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited