OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1537–1545

ZrO2-TiO2 thin films: a new material system for mid-infrared integrated photonics

Ningyuan Duan, Hongtao Lin, Lan Li, Juejun Hu, Lei Bi, Haipeng Lu, Xiaolong Weng, Jianliang Xie, and Longjiang Deng  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1537-1545 (2013)
http://dx.doi.org/10.1364/OME.3.001537


View Full Text Article

Enhanced HTML    Acrobat PDF (1977 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mid-infrared (MIR, 2 - 6 μm wavelength) transparent metal oxides are attractive materials for planar integrated MIR photonic devices and sensing applications. In this report, we present reactive sputtering deposited ZrO2-TiO2 (ZTO) thin films as a new material candidate for integrated MIR photonics. The material structure and optical properties were systematically studied as a function of Ti concentration. The thin film index of refraction monotonically increases with Ti concentration, while the film crystallinity decreases. Fully amorphous ZTO films were achieved with 40 at.% Ti doping on various substrates. MIR micro-disk resonators on MgO substrates were demonstrated using Zr0.6Ti0.4O2 strip-loaded waveguides with a loaded quality factor of ~11,000 at 5.2 μm wavelength.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.2750) Materials : Glass and other amorphous materials
(240.0310) Optics at surfaces : Thin films
(310.3840) Thin films : Materials and process characterization

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: June 25, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: August 18, 2013
Published: August 29, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Citation
Ningyuan Duan, Hongtao Lin, Lan Li, Juejun Hu, Lei Bi, Haipeng Lu, Xiaolong Weng, Jianliang Xie, and Longjiang Deng, "ZrO2-TiO2 thin films: a new material system for mid-infrared integrated photonics," Opt. Mater. Express 3, 1537-1545 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)
  2. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett.38(7), 1122–1124 (2013). [CrossRef] [PubMed]
  3. C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012). [CrossRef]
  4. A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010). [CrossRef]
  5. R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013). [CrossRef]
  6. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013). [CrossRef] [PubMed]
  7. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011). [CrossRef] [PubMed]
  8. H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013). [CrossRef] [PubMed]
  9. J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in IEEE Photonics Society 2010 23rd Annual Meeting, (IEEE, 2011), pp. 313–314.
  10. S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).
  11. R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003). [CrossRef]
  12. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2012). [CrossRef] [PubMed]
  13. “Nonlinear Optical Materials,” in Encyclopedia of Materials: Science and Technology, Robert W. Boyd and George L. Fischer, eds. (Elsevier, 2001).
  14. D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt.21(16), 2978–2981 (1982). [CrossRef] [PubMed]
  15. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  16. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt.51(28), 6789–6798 (2012). [CrossRef] [PubMed]
  17. D. C. Cronemeyer, “Electrical and optical properties of rutile single crystals,” Phys. Rev.87(5), 876–886 (1952). [CrossRef]
  18. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007). [CrossRef] [PubMed]
  19. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  20. U. Troitzsch and D. J. Ellis, “The ZrO2-TiO2 phase diagram,” J. Mater. Sci.40(17), 4571–4577 (2005). [CrossRef]
  21. L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009). [CrossRef]
  22. M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993). [CrossRef]
  23. B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012). [CrossRef]
  24. S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011). [CrossRef]
  25. B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002). [CrossRef]
  26. Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004). [CrossRef]
  27. R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994). [CrossRef] [PubMed]
  28. R. Swanepoel, “Determination of the thickness and optical constant of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983). [CrossRef]
  29. J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011). [CrossRef]
  30. R. Singh, M. Kumar, and S. Chandra, “Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications,” J. Mater. Sci.42(12), 4675–4683 (2007). [CrossRef]
  31. X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B65(7), 075105 (2002). [CrossRef]
  32. A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011). [CrossRef]
  33. D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev.113(5), 1222–1226 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited