OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1546–1560

Long-Wave IR Quantum Cascade Lasers for emission in the λ = 8-12μm spectral region

Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G. Tsekoun, Rowel Go, and C. Kumar N. Patel  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1546-1560 (2013)
http://dx.doi.org/10.1364/OME.3.001546


View Full Text Article

Enhanced HTML    Acrobat PDF (1489 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article we review a selection of recent results on long-wave quantum cascade lasers both for high power and for single-mode emission. Both MBE-grown and MOCVD-grown devices are examined and compared. Currently, LWIR QC lasers exhibit output powers in the Watt-level range and up to double-digit conversion efficiencies in the best cases.

© 2013 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Laser Materials

History
Original Manuscript: July 23, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: August 21, 2013
Published: August 29, 2013

Virtual Issues
Mid-IR Photonic Materials (2013) Optical Materials Express

Citation
Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G. Tsekoun, Rowel Go, and C. Kumar N. Patel, "Long-Wave IR Quantum Cascade Lasers for emission in the λ = 8-12μm spectral region," Opt. Mater. Express 3, 1546-1560 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002). [CrossRef]
  3. M. Troccoli, J. Fan, G. Tsvid, and X. Wang, “High performance Quantum Cascade lasers for industrial applications,” in The Wonders of Nanotechnology, M. Razeghi, ed. (SPIE press, 2013), pp. 225–241.
  4. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol.26(21), 3534–3555 (2008). [CrossRef]
  5. R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011). [CrossRef] [PubMed]
  6. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express20(22), 24272–24279 (2012). [CrossRef] [PubMed]
  7. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 μm),” Opt. Eng. 49111106 (2010).
  8. F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).
  9. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011). [CrossRef]
  10. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ =3.4 μm and λ =3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012). [CrossRef]
  11. D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010). [CrossRef]
  12. Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013). [CrossRef]
  13. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002). [CrossRef] [PubMed]
  14. Y. Al, Cho, Molecular Beam Epitaxy (AIP Press, 1997).
  15. M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005). [CrossRef]
  16. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006). [CrossRef]
  17. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009). [CrossRef]
  18. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009). [CrossRef]
  19. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010). [CrossRef]
  20. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012). [CrossRef] [PubMed]
  21. S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010). [CrossRef]
  22. A. Lyakh, R. Maulini, and A. Tsekoun, C. Kumar, N. Patel, L. Diehl, C. Pflügl, Q. Wang and F. Capasso, U. S. Patent #8,014,430 (September 6, 2011).
  23. V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004). [CrossRef]
  24. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited