OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 9 — Sep. 1, 2013
  • pp: 1561–1570

CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering

A. Chiasera, C. Macchi, S. Mariazzi, S. Valligatla, L. Lunelli, C. Pederzolli, D.N. Rao, A. Somoza, R.S. Brusa, and M. Ferrari  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 9, pp. 1561-1570 (2013)
http://dx.doi.org/10.1364/OME.3.001561


View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

GeO2 transparent glass ceramic planar waveguides were fabricated by a RF-sputtering technique and then irradiated by a pulsed CO2 laser. The effects of CO2 laser processing on the optical and structural properties of the waveguides were evaluated by different techniques including m-line, micro-Raman spectroscopy, atomic force microscopy, and positron annihilation spectroscopy. After laser annealing, an increase of the refractive index of approximately 0.04 at 1.5 µm and a decrease of the attenuation coefficient from 0.9 to 0.5 db/cm at 1.5 µm was observed. Raman spectroscopy and microscopy results put in evidence that the system embeds GeO2 nanocrystals and their phase varies with the irradiation time. Moreover, positron annihilation spectroscopy was used to study the depth profiling of the as prepared and laser annealed samples. The obtained results yielded information on the structural changes produced after the irradiation process inside the waveguiding films of approximately 1 µm thickness. In addition, a density value of the amorphous GeO2 samples was evaluated.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.4760) Materials : Optical properties
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.1860) Thin films : Deposition and fabrication
(310.2790) Thin films : Guided waves

ToC Category:
Laser Materials Processing

History
Original Manuscript: May 16, 2013
Revised Manuscript: July 8, 2013
Published: August 30, 2013

Citation
A. Chiasera, C. Macchi, S. Mariazzi, S. Valligatla, L. Lunelli, C. Pederzolli, D.N. Rao, A. Somoza, R.S. Brusa, and M. Ferrari, "CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering," Opt. Mater. Express 3, 1561-1570 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1561


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010). [CrossRef]
  2. N. Terakado and K. Tanaka, “Photo-induced phenomena in sputtered GeO2 films,” J. Non-Cryst. Solids351(1), 54–60 (2005). [CrossRef]
  3. Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008). [CrossRef]
  4. C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013). [CrossRef] [PubMed]
  5. A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).
  6. V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).
  7. S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010). [CrossRef]
  8. B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010). [CrossRef]
  9. A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009). [CrossRef]
  10. G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).
  11. S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D. N. Rao, G. C. Righini, and M. Ferrari, “High quality factor 1-D Er³⁺-activated dielectric microcavity fabricated by rf-sputtering,” Opt. Express20(19), 21214–21222 (2012). [CrossRef] [PubMed]
  12. M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater.8(1-2), 37–41 (1997). [CrossRef]
  13. S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982). [CrossRef]
  14. C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009). [CrossRef]
  15. S. Dutta, H. E. Jackson, and J. T. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett.37(6), 512–514 (1980). [CrossRef]
  16. S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing,” J. Appl. Phys.52(6), 3873–3875 (1981). [CrossRef]
  17. S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981). [CrossRef]
  18. Q. Liu, K. S. Chiang, L. Reekie, and Y. T. Chow, “CO2 laser induced refractive index changes in optical polymers,” Opt. Express20(1), 576–582 (2012). [CrossRef] [PubMed]
  19. A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012). [CrossRef]
  20. N. Jiang, J. Qiu, and J. C. H. Spence, “Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope,” Appl. Phys. Lett.86, 143112–1–143112–3 (2005).
  21. P. Muller-Buschbaum, “A basic introduction to grazing incidence small-angle X-ray scattering,” Lect. Notes Phys.776, 61–89 (2009).
  22. P. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000).
  23. S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000). [CrossRef]
  24. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012). [CrossRef] [PubMed]
  25. A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998). [CrossRef]
  26. C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006). [CrossRef]
  27. R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000). [CrossRef]
  28. P. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys.60(3), 701–779 (1988). [CrossRef]
  29. S. Valkealahti and R. M. Nieminen, “Monte Carlo calculations of keV electron and positron slowing down in solids. II,” Appl. Phys., A Mater. Sci. Process.35(1), 51–59 (1984). [CrossRef]
  30. P. Asoka-Kumar, K. G. Lynn, and D. O. Welch, “Characterization of defects in Si and SiO2−Si using positrons,” J. Appl. Phys.76(9), 4935–4982 (1994). [CrossRef]
  31. A. Trukhin and B. Capoen, “Raman and optical reflection spectra of germanate and silicate glasses,” J. Non-Cryst. Solids351(46-48), 3640–3643 (2005). [CrossRef]
  32. C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998). [CrossRef]
  33. Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett.90, 081909-1–081909-3 (2007)
  34. T. P. Mernagh and L. G. Liu, “Temperature dependence of Raman spectra of the quartz- and rutile-types of GeO2,” Phys. Chem. Miner.24(1), 7–16 (1997). [CrossRef]
  35. V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009). [CrossRef]
  36. M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991). [CrossRef]
  37. R. G. Hunsperger, Integrated Optics – Theory and Technology (Springer-Verlag 2009), Chap. 6.
  38. S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010). [CrossRef]
  39. A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991). [CrossRef]
  40. P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012). [CrossRef]
  41. Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010). [CrossRef]
  42. J. Lucas, “Infrared glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999). [CrossRef]
  43. D. W. Sheibley and M. H. Fowler, “Infrared spectra of Various metal oxides in the region of 2 to 26 microns. NASA TN D-3750,” Tech. Note U. S. Natl. Aeronaut. Space Adm.D-3750, 1–62 (1967). [PubMed]
  44. T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited