OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 1 — Jan. 1, 2014
  • pp: 111–120

Sequential three-photon near-infrared quantum cutting in transparent fluorogermanate glass-ceramics containing LaF3:Tm3+ nanocrystals

J. P. Zhang, D. C. Yu, F. F. Zhang, M. Y. Peng, and Q. Y. Zhang  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 1, pp. 111-120 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transparent fluorogermanate glass-ceramics singly doped with 0.25 mol.%Tm3+ have been prepared through melt quenching and sequential thermal treatment. The structure and composition of the glass-ceramics have been characterized by means of X-ray diffraction, Raman spectroscopy and transmission electron microscopy. Efficient three-step sequential three-photon near-infrared (NIR) quantum cutting has been demonstrated, where an absorbed blue photon at 468 nm could be cut into three NIR photons at 1190, 1462 and 1800 nm, respectively. The underlying mechanism has been analyzed in terms of the static and dynamic spectra measurements. Based on the experimental data and theoretical consideration, an internal quantum yield has been estimated to be about 160%. Further development of such a triply-cutting material might explore a way to design high efficient photonic devices, which harvest more photons emitted than absorbed in the excitation process.

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Rare-Earth-Doped Materials

Original Manuscript: October 21, 2013
Revised Manuscript: November 30, 2013
Manuscript Accepted: December 8, 2013
Published: December 16, 2013

J. P. Zhang, D. C. Yu, F. F. Zhang, M. Y. Peng, and Q. Y. Zhang, "Sequential three-photon near-infrared quantum cutting in transparent fluorogermanate glass-ceramics containing LaF3:Tm3+ nanocrystals," Opt. Mater. Express 4, 111-120 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010). [CrossRef]
  2. R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11 → 4f105d excitation,” J. Lumin.90(3–4), 111–122 (2000). [CrossRef]
  3. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957). [CrossRef]
  4. J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974). [CrossRef]
  5. W. W. Piper, J. A. de Luca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974). [CrossRef]
  6. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999). [CrossRef] [PubMed]
  7. B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003). [CrossRef]
  8. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005). [CrossRef]
  9. Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods,” Appl. Phys. Lett.90(2), 021107 (2007). [CrossRef]
  10. Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010). [CrossRef]
  11. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009). [CrossRef]
  12. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008). [CrossRef] [PubMed]
  13. J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010). [CrossRef]
  14. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010). [CrossRef]
  15. D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012). [CrossRef]
  16. H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett.36(6), 876–878 (2011). [CrossRef] [PubMed]
  17. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011). [CrossRef]
  18. X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, and G. J. Salamo, “Three-photon infrared quantum cutting from single species of rare-earth Er3+ ions in Er0.3Gd0.7VO4 crystalline,” Opt. Lett.34(7), 887–889 (2009). [CrossRef] [PubMed]
  19. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012). [CrossRef]
  20. D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012). [CrossRef]
  21. M. Mortier, “Between glass and crystal: Glass–ceramics, a new way for optical materials,” Philos. Mag. B82(6), 745–753 (2002).
  22. M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001). [CrossRef]
  23. M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids239(1–3), 149–155 (1998). [CrossRef]
  24. W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012). [CrossRef]
  25. D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).
  26. L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001). [CrossRef]
  27. H. H. Caspers, R. A. Buchanan, and H. R. Marlin, “Lattice Vibrations of LaF3,” J. Chem. Phys.41(1), 94 (1964). [CrossRef]
  28. R. P. Bauman and S. P. S. Porto, “Lattice vibrations and structure of rare-earth fluorides,” Phys. Rev.161(3), 842–847 (1967). [CrossRef]
  29. Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006). [CrossRef]
  30. Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005). [CrossRef]
  31. J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys.78(9), 5317–5325 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited