OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 1 — Jan. 1, 2014
  • pp: 162–171

Distributed feedback lasing in cellulose films

D. Wenzlik, A. Varanytsia, A. Munoz, T. Kosa, B. Taheri, R. Zentel, and P. Palffy-Muhoray  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 1, pp. 162-171 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cellulose derivatives, because of their molecular structure and chirality, can self-assemble to form spatially periodic cholesteric liquid crystal phases. We have synthesized and produced solid cross-linked cholesteric cellulose based films optimized to provide high reflectivity. Since these films are self-assembled photonic bandgap materials, they may be expected to show distributed feedback lasing. By doping samples with fluorescent dyes and optically pumping thin films of these materials, we were able to demonstrate, to the best of our knowledge, for the first time, mirrorless band-edge lasing in cellulose derivatives.

© 2013 Optical Society of America

OCIS Codes
(160.3380) Materials : Laser materials
(160.3710) Materials : Liquid crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 26, 2013
Revised Manuscript: December 16, 2013
Manuscript Accepted: December 16, 2013
Published: December 20, 2013

D. Wenzlik, A. Varanytsia, A. Munoz, T. Kosa, B. Taheri, R. Zentel, and P. Palffy-Muhoray, "Distributed feedback lasing in cellulose films," Opt. Mater. Express 4, 162-171 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Jarvis, “Chemistry: cellulose stacks up,” Nature426(6967), 611–612 (2003). [CrossRef] [PubMed]
  2. D. G. Gray, “Chiral nematic colloidal suspensions and films of cellulose,” Abstr. Pap. Am. Chem. S.219, U273 (2000).
  3. Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, “A cellulose liquid crystal motor: a steam engine of the second kind,” Sci Rep3, 1028 (2013). [PubMed]
  4. M. Müller, R. Zentel, and H. Keller, “Solid opalescent films originating from urethanes of cellulose,” Adv. Mater.9, 159–162 (1997). [CrossRef]
  5. S. Tseng, G. V. Laivins, and D. G. Gray, “The propanoate esterof (2-hydroxypropyl)cellulose: a thermotropic cholesteric polymer that reflects visible light at ambient temperatures,” Macromolecules15(5), 1262–1264 (1982). [CrossRef]
  6. S. N. Bhadani and D. G. Gray, “Liquid crystal formation form the benzoic acid ester of hydroxypropulcellulose,” Macromol. Rapid Commun.3(6), 449–455 (1982). [CrossRef]
  7. Y. Nishio, T. Yamane, and T. Takahashi, “Morphological studies of liquid-crystalline cellulose derivatives,” J. Polym. Sci., Polym. Phys. Ed.23(5), 1043–1052 (1985). [CrossRef]
  8. C. Zhao and B.- Cai, “UV-initiated solidification of liquid crystalline ethylcellulose/acrylic acid films and bands formed in the process,” Macromol. Rapid Commun.16(4), 323–328 (1995). [CrossRef]
  9. P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci364(1847), 2747–2761 (2006). [CrossRef] [PubMed]
  10. H. Kogelnik and C. V. Shank, “Stimulated Emission in a Periodic Structure,” Appl. Phys. Lett.18(4), 152–154 (1971). [CrossRef]
  11. Liquid Crystal Microlasers, ed. L. M. Blinov, R. Bartolino, (Transworld Research Network, Trivandrum, 2010).
  12. B. Taheri, P. Palffy-Muhoray, and H. Kabir, Cuyahoga Falls, Feb. 18–19 ALCOM Symposium: Chiral Materials and Applications (1999).
  13. W. Haase, F. Podgornov, Y. Matsuhisa, and M. Ozaki, Nanophotonic Materials, Photonic Crystals, Plasmonics and Metamaterials. (Wiley-VCH, Weinheim, 2008), Chap. 13.
  14. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4(10), 676–685 (2010). [CrossRef]
  15. Liquid Crystal Elastomers: Materials and Application, Advances in Polymer Science 250, ed. W. H. de Jeu (Springer, Heidelberg, 2012).
  16. M. Müller and R. Zentel, “Cholesteric phases and films from cellulose derivatives,” Macromol. Chem. Phys.201(15), 2055–2063 (2000). [CrossRef]
  17. A. Muñoz, M. E. McConney, T. Kosa, P. Luchette, L. Sukhomlinova, T. J. White, T. J. Bunning, and B. Taheri, “Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell thickness,” Opt. Lett.37, 2904–2906 (2012). [CrossRef] [PubMed]
  18. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater.13(14), 1069–1072 (2001). [CrossRef]
  19. D. Wenzlik and R. Zentel, “High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates,” Macromol. Chem. Phys.214(21), 2405–2414 (2013). [CrossRef]
  20. A. B. Shipovskaya, G. F. Mikul'skii, and G. N. Timofeeva, “Structurization and optical activity in cellulose triacetate modified with trifluoroacetic acid vapor,” Russ. J. Appl. Chem.77(1), 148–153 (2004). [CrossRef]
  21. W. Cao, A. Marino, G. Abbate, P. Palffy-Muhoray, and B. Taheri, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)429(1), 101–110 (2005). [CrossRef]
  22. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid-crystals,” J. Appl. Phys.76(2), 1331–1333 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited