OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 1 — Jan. 1, 2014
  • pp: 29–40

Predicting the drawing conditions for Microstructured Optical Fiber fabrication

Roman Kostecki, Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith, and Tanya M. Monro  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 1, pp. 29-40 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The efficient and accurate fabrication of Microstructured optical fibers (MOFs) requires a practical understanding of the ‘draw process’ beyond what is achievable by trial and error, which requires the ability to predict the experimental drawing parameters needed to produce the desired final geometry. Our results show that the Fitt et al. fluid-mechanics model for describing the draw process of a single axisymmetric capillary fiber provides practical insights when applied to more complex multi-hole symmetric and asymmetric MOF geometries. By establishing a method to relate the multi-hole MOF geometry to a capillary and understanding how material temperature varies with the draw tower temperature profile, it was found that analytical equations given by the Fitt model could be used to predict the parameters necessary for the chosen structure. We show how this model provides a practical framework that contributes to the efficient and accurate fabrication of the desired MOF geometries by predicting suitable fiber draw conditions.

© 2013 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(080.2720) Geometric optics : Mathematical methods (general)
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3850) Other areas of optics : Materials processing
(350.4600) Other areas of optics : Optical engineering
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Materials

Original Manuscript: September 23, 2013
Revised Manuscript: November 13, 2013
Manuscript Accepted: November 16, 2013
Published: December 2, 2013

Roman Kostecki, Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith, and Tanya M. Monro, "Predicting the drawing conditions for Microstructured Optical Fiber fabrication," Opt. Mater. Express 4, 29-40 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973). [CrossRef]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21, 1547–1549 (1996). [CrossRef] [PubMed]
  3. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006). [CrossRef]
  4. W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011). [CrossRef] [PubMed]
  5. M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012). [CrossRef]
  6. S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17, 14053–15062 (2009). [CrossRef] [PubMed]
  7. N. A. Issa, “High numerical aperture in multimode microstructured optical fibers,” Appl. Opt.43, 6191–6197 (2004). [CrossRef] [PubMed]
  8. B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009). [CrossRef]
  9. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999). [CrossRef]
  10. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008). [CrossRef] [PubMed]
  11. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010). [CrossRef]
  12. S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013). [CrossRef]
  13. K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010). [CrossRef]
  14. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007). [CrossRef] [PubMed]
  15. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2, 304–320 (2012). [CrossRef]
  16. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008). [CrossRef]
  17. H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011). [CrossRef]
  18. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007). [CrossRef]
  19. P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009). [CrossRef]
  20. J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers – fundamentals and applications,” J. Am. Ceram. Soc.89, 2–12 (2006). [CrossRef]
  21. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19, 1441–1448 (2011). [CrossRef] [PubMed]
  22. S. E. Rosenberg, H. Papamichael, and I. N. Miaoulis, “A 2-dimensional analysis of the viscous problem of a glass preform during the optical-fiber drawing process,” Glass Technol.35, 260–264 (1994).
  23. A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. J.2, 620–629 (2010). [CrossRef]
  24. S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers – Part 1 & 2,” J. Lightwave Technol.23, 2245–2266 (2005). [CrossRef]
  25. G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010). [CrossRef]
  26. A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002). [CrossRef]
  27. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012). [CrossRef]
  28. S. H. K. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Tran.40, 843–856 (1997). [CrossRef]
  29. R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol.24, 4304–4313 (2006). [CrossRef]
  30. C. Voyce, A. Fitt, and T. Monro, “Mathematical model of the spinning of microstructured fibres,” Opt. Express12, 5810–5820 (2004). [CrossRef] [PubMed]
  31. C. J. Voyce, A. D. Fitt, and T. M. Monro, “The mathematical modelling of rotating capillary tubes for holey-fibre manufacture,” J. Eng. Math.60, 69–87 (2008). [CrossRef]
  32. C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: The effects of preform rotation,” J. Lightwave Technol.26, 791–798 (2008). [CrossRef]
  33. C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical modeling of the self-pressurizing mechanism for microstructured fiber drawing,” J. Lightwave Technol.27, 871–878 (2009). [CrossRef]
  34. G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).
  35. U. C. Paek and R. B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys.49, 4417–4422 (1978). [CrossRef]
  36. G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011). [CrossRef]
  37. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010). [CrossRef]
  38. M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008). [CrossRef]
  39. Heraeus Quarzglas GmbH & Co. KG, http://heraeus-quarzglas.com/ , Pure Silica Rods for Specialty Fiber Applications, 1 (Heraeus,2012).
  40. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011). [CrossRef] [PubMed]
  41. R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).
  42. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Ac.46, 1061–1072 (1982). [CrossRef]
  43. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys.92, 7619–7629 (2002). [CrossRef]
  44. S. Roy Choudhury and Y. Jaluria, “Thermal transport due to material and gas flow in a furnace for drawing an optical fiber,” J. Mater. Res.13, 494–503 (1998). [CrossRef]
  45. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41, 18–22 (1958). [CrossRef]
  46. W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42, 6–10 (1959). [CrossRef]
  47. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012). [CrossRef]
  48. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol.19, 1924–1931 (2001). [CrossRef]
  49. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009). [CrossRef] [PubMed]
  50. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013). [CrossRef]
  51. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited