OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 1 — Jan. 1, 2014
  • pp: 63–78

Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics

Francesco Bonaccorso and Zhipei Sun  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 1, pp. 63-78 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Graphene and other two-dimensional (2d) crystals are promising materials for photonic and optoelectronic applications. A key requirement for these applications is the development of industrial-scale, reliable, inexpensive production processes, while providing a balance between ease of fabrication and final material quality with on-demand properties. Solution-processing offers a simple and cost-effective pathway to fabricate various 2d crystal based photonic devices, presenting huge integration flexibility compared to conventional methods. Here we present an overview of graphene and other 2d crystals based ultrafast photonics, from solution processing of the raw bulk materials, the fabrication of saturable absorbers, to their applications in ultrafast lasers.

© 2013 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.4236) Materials : Nanomaterials

ToC Category:
Ultrafast Optics

Original Manuscript: September 30, 2013
Revised Manuscript: November 25, 2013
Manuscript Accepted: November 25, 2013
Published: December 12, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Francesco Bonaccorso and Zhipei Sun, "Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics," Opt. Mater. Express 4, 63-78 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003). [CrossRef] [PubMed]
  2. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004). [CrossRef]
  3. L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express13, 4085–4089 (2005). [CrossRef] [PubMed]
  4. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon.7, 842–845 (2013). [CrossRef]
  5. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009). [CrossRef]
  6. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009). [CrossRef]
  7. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008). [CrossRef]
  8. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008). [CrossRef]
  9. Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008). [CrossRef]
  10. Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010). [CrossRef]
  11. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004). [CrossRef]
  12. Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005). [CrossRef]
  13. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006). [CrossRef]
  14. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30, 427–447 (2012). [CrossRef]
  15. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013). [PubMed]
  16. M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013). [CrossRef] [PubMed]
  17. R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).
  18. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010). [CrossRef]
  19. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010). [CrossRef]
  20. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010). [CrossRef] [PubMed]
  21. M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett.102, 086809 (2009). [CrossRef] [PubMed]
  22. D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008). [CrossRef]
  23. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008). [CrossRef]
  24. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007). [CrossRef] [PubMed]
  25. A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013). [CrossRef]
  26. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.
  27. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012). [CrossRef]
  28. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012). [CrossRef] [PubMed]
  29. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2012). [CrossRef]
  30. P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013). [CrossRef]
  31. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013). [CrossRef] [PubMed]
  32. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).
  33. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).
  34. N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013). [CrossRef]
  35. J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010). [CrossRef]
  36. M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012). [CrossRef] [PubMed]
  37. M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys.82, 3045–3067 (2010). [CrossRef]
  38. P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007). [CrossRef]
  39. J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013). [CrossRef] [PubMed]
  40. V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010). [CrossRef]
  41. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011). [CrossRef] [PubMed]
  42. W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008). [CrossRef]
  43. Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett.1, 277–283 (2010). [CrossRef]
  44. J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010). [CrossRef] [PubMed]
  45. C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009). [CrossRef]
  46. G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012). [CrossRef] [PubMed]
  47. E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem., 3, 177–216 (1983). [CrossRef]
  48. J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., 18, 193–335 (1969). [CrossRef]
  49. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010). [CrossRef] [PubMed]
  50. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012). [CrossRef]
  51. H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012). [CrossRef]
  52. T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005). [CrossRef] [PubMed]
  53. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005). [CrossRef]
  54. J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett.77, 3589 (1996). [CrossRef]
  55. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009). [CrossRef]
  56. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012). [CrossRef]
  57. T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.
  58. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005). [CrossRef] [PubMed]
  59. A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009). [CrossRef]
  60. S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011). [CrossRef]
  61. Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008). [CrossRef]
  62. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012). [CrossRef] [PubMed]
  63. M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009). [CrossRef] [PubMed]
  64. A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett.9, 4031–4036 (2009). [CrossRef] [PubMed]
  65. O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010). [CrossRef] [PubMed]
  66. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010). [CrossRef]
  67. S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010). [CrossRef] [PubMed]
  68. F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010). [CrossRef]
  69. U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011). [CrossRef] [PubMed]
  70. A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011). [CrossRef]
  71. T. J. Mason, Sonochemistry (Oxford University, 1999).
  72. J. Israelachvili, Intermolecular and Surface Force (Academic, 2011).
  73. http://echa.europa.eu/it/candidate-list-table
  74. H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995). [CrossRef] [PubMed]
  75. S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009). [CrossRef] [PubMed]
  76. T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011). [CrossRef]
  77. B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys.59, 466 (1860).
  78. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80, 1339 (1958). [CrossRef]
  79. S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007). [CrossRef]
  80. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008). [CrossRef] [PubMed]
  81. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009). [CrossRef]
  82. Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010). [CrossRef]
  83. Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.
  84. H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98, 021104 (2011). [CrossRef]
  85. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008). [CrossRef] [PubMed]
  86. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011). [CrossRef] [PubMed]
  87. Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011). [CrossRef]
  88. K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011). [CrossRef]
  89. J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971). [CrossRef]
  90. L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012). [CrossRef]
  91. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012). [CrossRef]
  92. F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32, 198–205 (1989). [CrossRef]
  93. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012). [CrossRef] [PubMed]
  94. U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013). [CrossRef]
  95. I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012). [CrossRef]
  96. T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).
  97. A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater.24, 2414–2421 (2012). [CrossRef]
  98. D. R. Lide, Handbook of Chemistry and Physics (CRC Press Inc., 2005).
  99. J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958). [CrossRef]
  100. J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem.70, 2814–2822 (1966). [CrossRef]
  101. F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013). [CrossRef]
  102. M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett.5, 713–718 (2005). [CrossRef] [PubMed]
  103. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006). [CrossRef]
  104. F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy2010, 727134 (2010). [CrossRef]
  105. S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013). [CrossRef]
  106. M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem.45, 275–290 (1953). [CrossRef] [PubMed]
  107. X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010). [CrossRef] [PubMed]
  108. S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003). [CrossRef]
  109. H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater.14, 1339–1365 (2002). [CrossRef]
  110. T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, and F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt., 38, 966–971 (1999). [CrossRef]
  111. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010). [CrossRef]
  112. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010). [CrossRef]
  113. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011). [CrossRef]
  114. X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2007). [CrossRef] [PubMed]
  115. A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012). [CrossRef]
  116. G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013). [CrossRef]
  117. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012). [CrossRef]
  118. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010). [CrossRef]
  119. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013). [CrossRef] [PubMed]
  120. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009). [CrossRef]
  121. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010). [CrossRef]
  122. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18, 23054–23061 (2010). [CrossRef] [PubMed]
  123. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101, 041118 (2012). [CrossRef]
  124. Z.-b. Liu, X. He, and D. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36, 3024–3026 (2011). [CrossRef] [PubMed]
  125. Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013). [CrossRef] [PubMed]
  126. X. Y. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett.37, 2394–2396 (2012). [CrossRef] [PubMed]
  127. Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express21, 14859–14866 (2013). [CrossRef] [PubMed]
  128. Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012). [CrossRef]
  129. C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013). [CrossRef]
  130. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012). [CrossRef]
  131. J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun.285, 4466–4469 (2012). [CrossRef]
  132. Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012). [CrossRef]
  133. B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99, 261109 (2011). [CrossRef]
  134. J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013). [CrossRef]
  135. D. Wang, X. He, Z. Liu, C. Liao, and X. Zao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol.30, 984–989 (2012). [CrossRef]
  136. L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011). [CrossRef]
  137. B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013). [CrossRef]
  138. Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express21, 18969–18974 (2013). [CrossRef] [PubMed]
  139. J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012). [CrossRef]
  140. S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking”, Opt. Express20, 5652–5657 (2012). [CrossRef] [PubMed]
  141. J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013). [CrossRef]
  142. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012). [CrossRef] [PubMed]
  143. M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013). [CrossRef]
  144. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20, 15474–15480 (2012). [CrossRef] [PubMed]
  145. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20, 23653–23658 (2012). [CrossRef] [PubMed]
  146. Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20, 23201–23214 (2012). [CrossRef] [PubMed]
  147. X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013). [CrossRef]
  148. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012). [CrossRef]
  149. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express21, 20062–20072 (2013). [CrossRef] [PubMed]
  150. L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012). [CrossRef]
  151. L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011). [CrossRef]
  152. Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012). [CrossRef]
  153. J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett.37, 2652–2654 (2012). [CrossRef] [PubMed]
  154. J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36, 1948–1950 (2011). [CrossRef] [PubMed]
  155. Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013). [CrossRef]
  156. J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett.99, 261107 (2011). [CrossRef]
  157. F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013). [CrossRef]
  158. C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).
  159. L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013). [CrossRef]
  160. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012). [CrossRef]
  161. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011). [CrossRef] [PubMed]
  162. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013). [CrossRef]
  163. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010). [CrossRef]
  164. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009). [CrossRef]
  165. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009). [CrossRef] [PubMed]
  166. J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express17, 14115–14120 (2009). [CrossRef] [PubMed]
  167. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013). [CrossRef] [PubMed]
  168. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005). [CrossRef]
  169. Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett.30, 1485–1487 (2005). [CrossRef] [PubMed]
  170. Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005) [CrossRef]
  171. Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004). [CrossRef]
  172. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006). [CrossRef]
  173. G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006). [CrossRef]
  174. Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006). [CrossRef]
  175. Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004). [CrossRef] [PubMed]
  176. H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004). [CrossRef]
  177. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32, 400–402 (2007). [CrossRef] [PubMed]
  178. Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express15, 4139–4148 (2007). [CrossRef] [PubMed]
  179. Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon.5, 446–447 (2011). [CrossRef]