OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 1 — Jan. 1, 2014
  • pp: 92–100

Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire

O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramírez, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 1, pp. 92-100 (2014)
http://dx.doi.org/10.1364/OME.4.000092


View Full Text Article

Enhanced HTML    Acrobat PDF (2683 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear optical response of Au metallic nanoparticles, synthesized and embedded in sapphire by using ion implantation, as a function of their size and shape is studied. The size of the Au NPs was varied by controlling the annealing time of the gold-irradiated sapphire in a reducing atmosphere. Their shape was changed from approximately spherical to prolate by swift heavy-ion irradiation using Si3+, obtaining an anisotropic composite consisting in deformed NPs, all oriented in the direction of the Si beam irradiation. At 532 nm and 26 ps pulses, the isotropic system shows negative nonlinear absorption increasing with size, and positive nonlinear refraction. On the other hand, prolate nanoparticles show negative (null) absorption and null (positive) refraction for the minor (major) axis. This kind of system also shows figures of merit and relaxing times in the order of the picoseconds, appropriate for all-optical switching applications.

© 2013 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 26, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 5, 2013
Published: December 13, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Citation
O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramírez, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda, "Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire," Opt. Mater. Express 4, 92-100 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-1-92


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rev.408, 131–314 (2005).
  3. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  4. L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system,” Opt. Mater. Express1(5), 980–989 (2011). [CrossRef]
  5. C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008). [CrossRef]
  6. R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012). [CrossRef]
  7. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Size-related third-order optical nonlinearities of Au nanoparticle arrays,” Opt. Express18(13), 13874–13879 (2010). [CrossRef] [PubMed]
  8. J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010). [CrossRef]
  9. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  11. V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010). [CrossRef]
  12. S. Palomba, M. Danckwerts, and L. Novotny, “Nolinear plasmonics with gold nanoparticle antenna,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009). [CrossRef]
  13. Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010). [CrossRef] [PubMed]
  14. K. Wang, H. Long, M. Fu, G. Yang, and P. X. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett.35(10), 1560–1562 (2010). [CrossRef] [PubMed]
  15. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000). [CrossRef]
  16. J. T. Seo, Q. G. Yang, W. J. Kim, J. H. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett.34(3), 307–309 (2009). [CrossRef] [PubMed]
  17. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007). [CrossRef]
  18. Y. Li, S. Zhang, J. Liu, and K. Zhang, “Quantum correlation between fundamental and second-harmonic field via second-harmonic generation,” J. Opt. Soc. Am. B24(3), 660–663 (2007). [CrossRef]
  19. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003). [CrossRef] [PubMed]
  20. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008). [CrossRef] [PubMed]
  21. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009). [CrossRef]
  22. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985)
  23. J. E. Midwinter, Photonics in Switching (Academic Press, 1993)
  24. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007). [CrossRef]
  25. A. L. González, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C112(19), 7356–7362 (2008). [CrossRef]
  26. P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012). [CrossRef]
  27. P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver are preparing a manuscript to be called “Ion beam induced deformation of gold nano-particles embedded in Sapphire.”
  28. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988). [CrossRef]
  29. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000). [CrossRef] [PubMed]
  30. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett.35(10), 1560–1562 (2010). [CrossRef] [PubMed]
  31. A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005). [CrossRef]
  32. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005). [CrossRef]
  33. M. Nastasi and J. W. Mayer, “Ion Implantation and Synthesis of Materials,” Springer, NY, (2006).
  34. E. Cattaruzza and F. Gonella, “Metal Nanoclusters by Ion Implantation,” H. S. Nalwa (Ed), Encyclopedia of Nanoscience and Nanotechnology, Vol.5, American Scientific Publishers, 369–385 (2004).
  35. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  36. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt.22(21), 3406–3410 (1983). [CrossRef] [PubMed]
  37. G. Boundebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009). [CrossRef]
  38. O. Kahl, D. Fishman, S. Webster, D. J. Hagan, E. W. Van Stryland, F. Niessler, and M. Wegener, “Thermal nonlinearities in gold nanostructures,” (personal communication, 2013).
  39. S. I. Anisimov, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974).
  40. M. Toulemonde, C. Dufour, and E. Paumier, “Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors,” Phys. Rev. B Condens. Matter46(22), 14362–14369 (1992). [CrossRef] [PubMed]
  41. Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited