OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 220–226

Tunable near-infrared localized surface plasmon resonances of heterostructured Cu1.94S-ZnS nanocrystals

Haihang Ye, Aiwei Tang, Yanbing Hou, Chunhe Yang, and Feng Teng  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 2, pp. 220-226 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strong near-infrared (NIR) localized surface plasmon resonances (LSPRs) have been observed in spherical Cu1.94S nanocrystals and matchstick-like Cu1.94S-ZnS heterostructured nanocrystals, which have been synthesized using a simple one-pot approach without any injection and pre-synthesis of metal precursors. The LSPRs peak of the Cu1.94S nanocrystals could be tuned from 1680 nm to 1375 nm by heterogrowth of ZnS onto the Cu1.94S nanocrystals due to the increase of free carriers (holes). The LSPRs absorbance can be optimized to 1322 nm by prolonging the growth time of the heterostructured nanocrystals, which may be used as a light absorbing agent for photothermal therapy.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.1030) Spectroscopy : Absorption
(300.6490) Spectroscopy : Spectroscopy, surface
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: December 3, 2013
Revised Manuscript: December 15, 2013
Manuscript Accepted: December 15, 2013
Published: January 7, 2014

Haihang Ye, Aiwei Tang, Yanbing Hou, Chunhe Yang, and Feng Teng, "Tunable near-infrared localized surface plasmon resonances of heterostructured Cu1.94S-ZnS nanocrystals," Opt. Mater. Express 4, 220-226 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. P. Jeon, S. J. Park, and T. W. Kim, “Electrical and optical properties of blue organic light-emitting devices fabricated utilizing color conversion CdSe and CdSe/ZnS quantum dots embedded in a poly(N-vinylcarbazole) hole transport layer,” Opt. Mater. Express2(5), 663–670 (2012). [CrossRef]
  2. A. W. Tang, F. Teng, S. Xiong, Y. Wang, B. Feng, and Y. B. Hou, “Nanocrystals/polymer light-emitting diodes with different-sized water-sol CdSe nanocrystals,” J. Electrochem. Soc.155(10), K190 (2008). [CrossRef]
  3. J. H. Yang, A. W. Tang, R. J. Zhou, and J. G. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene): CdSe nanocrystal solar cells,” Sol. Energy Mater. Sol. Cells95(2), 476–482 (2011). [CrossRef]
  4. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002). [CrossRef] [PubMed]
  5. S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, “Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures,” Adv. Mater.23(2), 180–197 (2011). [CrossRef] [PubMed]
  6. A. W. Tang, F. Teng, Y. B. Hou, Y. S. Wang, F. R. Tan, S. C. Qu, and Z. G. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett.96(16), 163112 (2010). [CrossRef]
  7. A. W. Tang, L. X. Yi, W. Han, F. Teng, Y. S. Wang, Y. B. Hou, and M. Y. Gao, “Synthesis, optical properties, and superlattice structure of Cu(I)-doped CdS nanocrystals,” Appl. Phys. Lett.97(3), 033112 (2010). [CrossRef]
  8. X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature437(7055), 121–124 (2005). [CrossRef] [PubMed]
  9. Z. D. Lu and Y. D. Yin, “Colloidal nanoparticle clusters: functional materials by design,” Chem. Soc. Rev.41(21), 6874–6887 (2012). [CrossRef] [PubMed]
  10. L. Carbone and P. D. Cozzoli, “Colloidal heterostructured nanocrystals: synthesis and growth mechanisms,” Nano Today5(5), 449–493 (2010). [CrossRef]
  11. W. S. Song, S. H. Lee, and H. Yang, “Fabrication of warm, high CRI white LED using non-cadmium quantum dots,” Opt. Mater. Express3(9), 1468–1473 (2013). [CrossRef]
  12. X. Liu, X. L. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater.23(10), 1256–1264 (2013). [CrossRef]
  13. I. Kriegel, C. Y. Jiang, J. Rodríguez-Fernández, R. D. Schaller, D. V. Talapin, E. da Como, and J. Feldmann, “Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals,” J. Am. Chem. Soc.134(3), 1583–1590 (2012). [CrossRef] [PubMed]
  14. H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chen, and W. F. Su, “Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei,” J. Mater. Chem. A1(2), 337–341 (2012). [CrossRef]
  15. H. H. Ye, A. W. Tang, L. M. Huang, Y. Wang, C. H. Yang, Y. B. Hou, H. S. Peng, F. J. Zhang, and F. Teng, “Facile one-step synthesis and transformation of Cu(I)-doped zinc sulfide nanocrystals to Cu1.94S-ZnS heterostructured nanocrystals,” Langmuir29(27), 8728–8735 (2013). [CrossRef] [PubMed]
  16. W. Han, L. X. Yi, N. Zhao, A. W. Tang, M. Y. Gao, and Z. Y. Tang, “Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals,” J. Am. Chem. Soc.130(39), 13152–13161 (2008). [CrossRef] [PubMed]
  17. S. K. Han, M. Gong, H. B. Yao, Z. M. Wang, and S. H. Yu, “One-pot controlled synthesis of hexagonal-prismatic Cu1.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures,” Angew. Chem. Int. Ed. Engl.51(26), 6365–6368 (2012). [CrossRef] [PubMed]
  18. M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, “One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures,” J. Am. Chem. Soc.133(7), 2052–2055 (2011). [CrossRef] [PubMed]
  19. R. Kuladeep, L. Jyothi, K. S. Alee, K. L. N. Deepak, and D. N. Rao, “Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency,” Opt. Mater. Express2(2), 161–172 (2012). [CrossRef]
  20. J. Yang, J. B. You, C. C. Chen, W. C. Hsu, H. R. Tan, X. W. Zhang, Z. R. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5(8), 6210–6217 (2011). [CrossRef] [PubMed]
  21. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater.10(5), 361–366 (2011). [CrossRef] [PubMed]
  22. S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011). [CrossRef] [PubMed]
  23. S. W. Hsu, W. Bryks, and A. R. Tao, “Effects of ccarrier density and shape on the localized surface plasmon resonances of Cu2–xS nanodisks,” Chem. Mater.24(19), 3765–3771 (2012). [CrossRef]
  24. K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc.134(9), 3995–3998 (2012). [CrossRef] [PubMed]
  25. F. Huang, J. Xu, D. Q. Chen, and Y. S. Wang, “Sandwich-like Cu1.94S-ZnS-Cu1.94S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior,” Nanotechnology23(42), 425604 (2012). [CrossRef] [PubMed]
  26. F. Huang, X. L. Wang, J. Xu, D. Q. Chen, and Y. S. Wang, “A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S-ZnS dimeric nanoheterostructure synthesized in solution,” J. Mater. Chem.22(42), 22614–22618 (2012). [CrossRef]
  27. L. X. Yi, A. W. Tang, M. Niu, W. Han, Y. B. Hou, and M. Y. Gao, “Synthesis and self-assembly of Cu1.94S–ZnS heterostructured nanorods,” CrystEngComm12(12), 4124–4130 (2010). [CrossRef]
  28. L. S. Li and A. P. Alivisatos, “Origin and scaling of the permanent dipole moment in CdSe nanorods,” Phys. Rev. Lett.90(9), 097402 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited