OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 255–265

Crystal growth, spectroscopic characterization, and laser operation of Tm/Mg: LiTaO3 crystal

Peixiong Zhang, Jigang Yin, Shuaiyi Zhang, Rui Zhang, Lianhan Zhang, Youchen Liu, Jianqiu Xu, and Yin Hang  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 2, pp. 255-265 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tm, Mg co-doped LiTaO3 crystal is grown by the traditional Czochralski method. By analyzing the absorption and emission measurements of the Tm/Mg: LiTaO3 single crystal with the Judd-Ofelt analysis, the intensity parameters Ω2,4,6, transition probabilities, exited state lifetimes, branching ratios, and emission cross-sections were calculated. Non-photorefractive continuous wave laser operation with a Tm/Mg: LiTaO3 single crystal is demonstrated for the first time. We obtained 1.51 W output power at 1.92 μm with a slope efficiency of near 38.5%, which, to the best of our knowledge, are the largest output power and highest slope efficiency obtained for this crystal thus far. The long-term photorefractive effect was also quantitatively analyzed.

© 2014 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lithium Niobate

Original Manuscript: October 18, 2013
Revised Manuscript: December 15, 2013
Manuscript Accepted: December 24, 2013
Published: January 9, 2014

Peixiong Zhang, Jigang Yin, Shuaiyi Zhang, Rui Zhang, Lianhan Zhang, Youchen Liu, Jianqiu Xu, and Yin Hang, "Crystal growth, spectroscopic characterization, and laser operation of Tm/Mg: LiTaO3 crystal," Opt. Mater. Express 4, 255-265 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sasagawa, Z. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett.85, 4325–4327 (2004). [CrossRef]
  2. S. Agger, J. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedbackfiber laser,” Opt. Lett.29, 1503–1505 (2004). [CrossRef] [PubMed]
  3. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photonics Research.1(1), 52–57 (2013). [CrossRef]
  4. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped Mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010). [CrossRef]
  5. G. Li, Y. Gu, B. Yao, L. Shan, and Y. Wang, “High-power high-brightness 2-μm continuous wave laser with a double-end diffusion-bonded Tm, Ho:YVO4 crystal,” Chin. Opt. Lett.11(9), 091404 (2013). [CrossRef]
  6. T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron.28(4), 1033–1040 (1992). [CrossRef]
  7. R.C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers,” Opt. Lett.15, 486–488 (1990). [CrossRef] [PubMed]
  8. R.C. Stoneman and L. Esterowitz, “Efficient 1.94 μm Tm:YALO laser,” IEEE J. Sel. Topics Quantum Electron.1, 78–80 (1995). [CrossRef]
  9. X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, Y. L. Ju, and Y. Z. Wang, “Diode-pumped high-efficiency Tm:YLF laser at room temperature,” Chin. Opt. Lett.6(8), 591–593 (2008). [CrossRef]
  10. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett.32, 2040–2042 (2007). [CrossRef] [PubMed]
  11. W. Romanowskia, R. Lisiecki, H. Jelinkova, and J. Sulcb, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quant. Electron35, 109–157 (2011). [CrossRef]
  12. R. Zhang, H. Li, P. Zhang, Y. Hang, and J. Xu, “Efficient 1856 nm emission from Tm,Mg:LiNbO3 laser, ” Opt. Exp.21, 20990–20998 (2013). [CrossRef]
  13. J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16, 1392–1397 (1999). [CrossRef]
  14. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett.25, 651–653 (2000). [CrossRef]
  15. P. Zhang, Y. Hang, J. Gong, C. Zhang, J. Yin, and L. Zhang, “Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal,” J. Cryst. Growth.364, 57–61 (2013). [CrossRef]
  16. P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater.33, 1677–1680 (2011). [CrossRef]
  17. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Part 2-Lett.41, L465–L467 (2002). [CrossRef]
  18. J. Caird, L. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron.11, 874–881 (1975). [CrossRef]
  19. M.J. Weber, T.E. Varitimos, and B.H. Matsinger, “Optical intensities of rare-earth ions in yttrium orthoaluminate,” Phys. Rev. B.8, 47–53 (1973). [CrossRef]
  20. B.M. Walsh, N.P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998). [CrossRef]
  21. F. Cornacchia, D. Parisi, and M. Tonelli, “Spectroscopy and diode-pumped laser experiments of LiLuF4:Tm3+ crystals,” IEEE J. Quantum Electron.44, 1076–1082 (2008). [CrossRef]
  22. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18, 925–930 (1982). [CrossRef]
  23. W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, and S. Golab, “Investigation of LiXO3 (X=Nb, Ta) crystals doped with luminescent ions recent results,” J. Alloys Compd.30(301), 152–157 (2000). [CrossRef]
  24. X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, and Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/ Er3+,” Cryst. Res. Technol.37(9), 976–982 (2002). [CrossRef]
  25. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett.77(16), 2494–2496 (2000). [CrossRef]
  26. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Opticallyinduced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited