OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 266–271

Fabrication of composite laser elements by a new thermal diffusion bonding method

Ivan Mukhin, Evgeny Perevezentsev, and Oleg Palashov  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 2, pp. 266-271 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1688 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method of thermal diffusion bonding of different garnet crystals is proposed. Its main advantage is simplicity and low cost: not very stringent requirements to the quality of surface, muffle furnace without press is sufficient. The proposed method enables fabricating composites of YAG, Yb:YAG, Yb:GGG, and TGG crystals with an aperture up to 20 mm and optical contact whose mechanical strength is comparable with that of monocrystals and reflection coefficient at the boundary is close to the Fresnel one.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.4670) Materials : Optical materials
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Laser Materials

Original Manuscript: October 28, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 24, 2013
Published: January 9, 2014

Ivan Mukhin, Evgeny Perevezentsev, and Oleg Palashov, "Fabrication of composite laser elements by a new thermal diffusion bonding method," Opt. Mater. Express 4, 266-271 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express21(1), 855–866 (2013). [CrossRef] [PubMed]
  2. O. L. Vadimova, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, E. A. Perevezentsev, and E. A. Khazanov, “Calculation of the gain coefficient in cryogenically cooled Yb:YAG disks at high heat generation rates,” Quantum Electron.43(3), 201–206 (2013). [CrossRef]
  3. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20 (2012). [CrossRef]
  4. Y. Cheng, J. Dong, and Y. Ren, “Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal,” Opt. Express20(22), 24803–24812 (2012). [CrossRef] [PubMed]
  5. H. C. Lee, P. L. Browlie, H. E. Meissner, and E. C. Rea, “Diffusion bonded composites of YAG single crystals,” Proc. SPIE1624, 2–10 (1991).
  6. A. Sugiyama, H. Fukuyama, T. Sasuga, T. Arisawa, and H. Takuma, “Direct bonding of Ti:sapphire laser crystals,” Appl. Opt.37(12), 2407–2410 (1998). [CrossRef] [PubMed]
  7. N. Traggis and N. Claussen, “Epoxy free bonding for high performance lasers,” in 11th Annual Directed Energy Symposium Proceedings, Directed Energy Professional Society (2008).
  8. S. N. Bagayev, A. A. Kaminskii, Yu. L. Kopylov, I. M. Kotelyanskii, and V. B. Kravchenko, “Simple method to join YAG ceramics and crystals,” Opt. Mater.34(6), 951–954 (2012). [CrossRef]
  9. E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb:YAG laser with 120-mJ energy at 500-Hz pulse repetition rate,” Quantum Electron.43(3), 207–210 (2013). [CrossRef]
  10. I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  11. I. B. Mukhin, E. A. Perevezentsev, and O. V. Palashov, “The new technique of thermal bonding for composite active elements fabrication,” presented at the Laser Optics 2012, Saint-Petersburg, Russia, 2012, ThR1–27.
  12. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with the disk-shaped magnetooptical element,” J. Opt. Soc. B29(4), 786–792 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited