OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 300–307

Ultrafast carrier dynamics and optical properties of nanoporous silicon at terahertz frequencies

J. R. Knab, Xinchao Lu, Felipe A. Vallejo, Gagan Kumar, Thomas E. Murphy, and L. Michael Hayden  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 2, pp. 300-307 (2014)
http://dx.doi.org/10.1364/OME.4.000300


View Full Text Article

Enhanced HTML    Acrobat PDF (2192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the broadband terahertz (THz) optical properties of nanoporous silicon samples with different porosities and the ultrafast carrier dynamics of photogenerated charge carriers in these materials. Following photoexcitation, we observe a fast carrier recovery time consisting of two dominant recombination processes with decay constants below ~10 ps. All samples exhibit initially low THz absorption that increases at higher frequencies, and is likely due to contributions from phonon bands and oxidation of the porous surface. The refractive index depends on porosity but shows little frequency dependence. These properties indicate that nanoporous silicon is a useful material for fast, ultrabroadband THz applications (e.g. intensity modulation).

© 2014 Optical Society of America

OCIS Codes
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(160.4236) Materials : Nanomaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Semiconductors

History
Original Manuscript: November 19, 2013
Revised Manuscript: December 28, 2013
Manuscript Accepted: December 28, 2013
Published: January 13, 2014

Citation
J. R. Knab, Xinchao Lu, Felipe A. Vallejo, Gagan Kumar, Thomas E. Murphy, and L. Michael Hayden, "Ultrafast carrier dynamics and optical properties of nanoporous silicon at terahertz frequencies," Opt. Mater. Express 4, 300-307 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-2-300


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Bomchil, A. Halimaoui, and R. Herino, “Porous silicon: The material and its applications in silicon-on-insulator technologies,” Appl. Surf. Sci.41–42, 604–613 (1989). [CrossRef]
  2. S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J. L. Coutaz, “Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys.83(11), 6007–6010 (1998). [CrossRef]
  3. S.-Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett.34(19), 2921–2923 (2009). [CrossRef] [PubMed]
  4. S.-Z. A. Lo, A. M. Rossi, and T. E. Murphy, “Terahertz transmission through p+ porous silicon membranes,” Phys. Status Solidi A206(6), 1273–1277 (2009). [CrossRef]
  5. J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37(2), 256–258 (2012). [CrossRef] [PubMed]
  6. V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997). [CrossRef] [PubMed]
  7. J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Y. Timoshenko, G. Polisski, and F. Koch, “Dichroic Bragg reflectors based on birefringent porous silicon,” Appl. Phys. Lett.78(24), 3887–3889 (2001). [CrossRef]
  8. S.-Z. A. Lo, G. Kumar, T. E. Murphy, and E. J. Heilweil, “Application of nanoporous silicon substrates for terahertz spectroscopy,” Opt. Mater. Express3(1), 114–125 (2013). [CrossRef]
  9. T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993). [CrossRef] [PubMed]
  10. P. M. Fauchet, L. Tsybeskov, C. Peng, S. P. Duttagupta, J. von Behren, Y. Kostoulas, J. M. V. Vandyshev, and K. D. Hirschman, “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE J. Sel. Top. Quantum Electron.1(4), 1126–1139 (1995). [CrossRef]
  11. M. Rahm, J.-S. Li, and W. J. Padilla, “THz Wave Modulators: A brief review on different modulation techniques,” J. Infrared Milli. Terahz. Waves34(1), 1–27 (2013). [CrossRef]
  12. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett.32(12), 1620–1622 (2007). [CrossRef] [PubMed]
  13. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett.32(6), 680–682 (2007). [CrossRef] [PubMed]
  14. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett.84(18), 3555–3557 (2004). [CrossRef]
  15. J. Kyoung, M. Seo, H. Park, S. Koo, H. S. Kim, Y. Park, B.-J. Kim, K. Ahn, N. Park, H.-T. Kim, and D.-S. Kim, “Giant nonlinear response of terahertz nanoresonators on VO2 thin film,” Opt. Express18(16), 16452–16459 (2010). [CrossRef] [PubMed]
  16. J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, and Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express19(27), 26666–26671 (2011). [CrossRef] [PubMed]
  17. H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C.-S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett.99(6), 061108 (2011). [CrossRef]
  18. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012). [CrossRef] [PubMed]
  19. P. D. Cunningham and L. M. Hayden, “Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy‚,” J. Phys. Chem. C112(21), 7928–7935 (2008). [CrossRef]
  20. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett.25(16), 1210–1212 (2000). [CrossRef] [PubMed]
  21. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett.92(1), 011131 (2008). [CrossRef]
  22. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K. Y. Jen, “Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008). [CrossRef]
  23. F. A. Hegmann, O. Ostroverkhova, and D. G. Cooke, “Probing Organic Semiconductors with Terahertz Pulses,” in Photophysics of Molecular Materials: From Single Molecules to Single Crystals, G. Lanzani, ed. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2006).
  24. T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II80(6), 1–9 (1997). [CrossRef]
  25. V. Y. Timoshenko, T. Dittrich, V. Lysenko, M. G. Lisachenko, and F. Koch, “Free charge carriers in mesoporous silicon,” Phys. Rev. B64(8), 085314 (2001). [CrossRef]
  26. D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B73(19), 193311 (2006). [CrossRef]
  27. P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, “Ultrafast carrier trapping in microcrystalline silicon observed in optical pump–terahertz probe measurements,” Appl. Phys. Lett.79(9), 1291–1293 (2001). [CrossRef]
  28. H. Tang, L.-G. Zhu, L. Zhao, X. Zhang, J. Shan, and S.-T. Lee, “Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching,” ACS Nano6(9), 7814–7819 (2012). [CrossRef] [PubMed]
  29. L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996). [CrossRef]
  30. A. K. W. Abdullah, K. A. Maslin, and T. J. Parker, “Observation of two-phonon difference bands in the FIR transmission spectrum of Si,” Infrared Phys.24(2-3), 185–188 (1984). [CrossRef]
  31. F. A. Johnson, “Lattice Absorption Bands in Silicon,” Proc. Phys. Soc.73(2), 265–272 (1959). [CrossRef]
  32. H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited