OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 4, Iss. 2 — Feb. 1, 2014
  • pp: 329–337

Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles

Arfat Pradana, Christian Kluge, and Martina Gerken  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 2, pp. 329-337 (2014)
http://dx.doi.org/10.1364/OME.4.000329


View Full Text Article

Enhanced HTML    Acrobat PDF (2750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that blending of TiO2 nanoparticles into nanoimprint polymer resist yields a composite material with an increased optical refractive index suitable for nanoimprint lithography. Complex refractive indices of n400nm = 1.94-i0.009, n500nm = 1.86-i0.003, and n600nm = 1.83-i0.002 are predicted for composite materials with 30% TiO2 nanoparticles of 35-nm diameter in Amonil UV nanoimprint resist. Layers with concentrations of 1 to 30 volume% of TiO2 nanoparticles blended into the composite resist material are prepared by spin-coating. Good agreement between measured and predicted optical properties is obtained. Using the composite imprint resist periodic linear gratings with periods of 370 nm are fabricated on glass substrates using UV nanoimprint lithography. Subsequently, an organic light emitting diode (OLED) is fabricated on top of the grating. Due to the high-index grating structure, waveguide modes are extracted from the OLED, which are observed in the OLED emission spectrum.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(160.4236) Materials : Nanomaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Organics and Polymers

History
Original Manuscript: October 2, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 20, 2014
Published: January 24, 2014

Citation
Arfat Pradana, Christian Kluge, and Martina Gerken, "Tailoring the refractive index of nanoimprint resist by blending with TiO2 nanoparticles," Opt. Mater. Express 4, 329-337 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-2-329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. (Amst)32(1), 221–233 (2009). [CrossRef]
  2. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys.104(9), 093111 (2008). [CrossRef]
  3. Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys.96(12), 7629–7636 (2004). [CrossRef]
  4. M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and Electrical Characteristics of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals in Organic/Electrode Layers,” Jpn. J. Appl. Phys.44(6A), 3669–3677 (2005). [CrossRef]
  5. B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett.96(24), 243302 (2010). [CrossRef]
  6. W.-S. Kim, K. B. Yoon, and B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique,” J. Mater. Chem.15(42), 4535–4539 (2005). [CrossRef]
  7. C. Lü and B. Yang, “High refractive index organic–inorganic nanocomposites: design, synthesis and application,” J. Mater. Chem.19(19), 2884–2901 (2009). [CrossRef]
  8. J. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, and M. Ueda, “Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film,” Chem. Mater.20(1), 273–281 (2008). [CrossRef]
  9. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.26, 458–480 (2008).
  10. K. Luo, S. Zhou, and L. Wu, “High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles,” Thin Solid Films517(21), 5974–5980 (2009). [CrossRef]
  11. Y. Liu, C. Lü, M. Li, L. Zhang, and B. Yang, “High refractive index organic–inorganic hybrid coatings with TiO2 nanocrystals,” Colloids Surf. A Physicochem. Eng. Asp.328(1-3), 67–72 (2008). [CrossRef]
  12. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, “Transparent poly (bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles,” Eur. Polym. J.45(3), 630–638 (2009). [CrossRef]
  13. C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride–titania hybrid materials,” J. Polym. Sci. A Polym. Chem.39(19), 3419–3427 (2001). [CrossRef]
  14. B.-T. Liu and P.-S. Li, “Preparation and characterization of high-refractive-index polymer/inorganic hybrid films containing TiO2 nanoparticles prepared by 4-aminobenzoic acid,” Surf. Coat. Tech.231, 301–306 (2013). [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley 2008).
  16. A. J. Cox, A. J. DeWeerd, and J. Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys.70(6), 620–625 (2002). [CrossRef]
  17. P. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt.42(3), 436–444 (2003). [CrossRef] [PubMed]
  18. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci.212-213, 654–660 (2003). [CrossRef]
  19. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983). [CrossRef]
  20. U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, and H. Kurz, “Comparison of multilayer stamp concepts in UV–NIL,” Microelectron. Eng.83(4-9), 944–947 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited